Welcome to LookChem.com Sign In|Join Free

CAS

  • or

70223-97-1

Post Buying Request

70223-97-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

70223-97-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 70223-97-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,0,2,2 and 3 respectively; the second part has 2 digits, 9 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 70223-97:
(7*7)+(6*0)+(5*2)+(4*2)+(3*3)+(2*9)+(1*7)=101
101 % 10 = 1
So 70223-97-1 is a valid CAS Registry Number.

70223-97-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name N-(m-tolyl)methanesulfonamide

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:70223-97-1 SDS

70223-97-1Relevant articles and documents

Synthesis and biological evaluation of 3β-O-neoglycosides of caudatin and its analogues as potential anticancer agents

Li, Xiao-San,Chen, Tang-Ji,Xu, Zhi-Peng,Long, Juan,He, Miao-Ying,Zhan, He-Hui,Zhuang, Hai-Cai,Wang, Qi-Lin,Liu, Li,Yang, Xue-Mei,Tang, Jin-Shan

, (2021/12/30)

In order to study the structure–activity relationship (SAR) of C21-steroidal glycosides toward human cancer cell lines and explore more potential anticancer agents, a series of 3β-O-neoglycosides of caudatin and its analogues were synthesized. The results revealed that most of peracetylated 3β-O-monoglycosides demonstrated moderate to significant antiproliferative activities against four human cancer cell lines (MCF-7, HCT-116, HeLa, and HepG2). Among them, 3β-O-(2,3,4-tri-O-acetyl-β-L-glucopyranosyl)-caudatin (2k) exhibited the highest antiproliferative activity aganist HepG2 cells with an IC50 value of 3.11 μM. Mechanical studies showed that compound 2k induced both apoptosis and cell cycle arrest at S phase in a dose dependent manner. Overall, these present findings suggested that glycosylation is a promising scaffold to improve anticancer activity for naturally occurring C21-steroidal aglycones, and compound 2k represents a potential anticancer agent deserved further investigation.

Synthesis and antimicrobial studies of novel n-glycosyl hydrazino carbothioamide

Nayak, Riddhi A.,Mangte, Anvita D.

, p. 127 - 131 (2021/01/06)

In view of applications of N-glycosylated compounds in medicinal chemistry and in many other ways, herein the synthesis of novel N-glycosyl hydrazino carbothioamides is reported. New N-glycosyl hydrazino carbothioamides were synthesized by the condensation of per-O-acetyl glycosyl isothiocyanate with different aromatic hydrazides. The newly synthesized compounds were characterized by using the IR, 1H NMR and mass spectral studies. Antimicrobial evaluation of the synthesized N-glycosyl hydrazino carbothioamide was also examined. Antimicrobial activities of the synthesized compound were evaluated against bacteria E. coli, P. aeruginosa, S. aureus, S. pyogenus and fungi C. albicans, A. niger and A. clavatus. All the N-glycosyl hydrazino carbothioamides exhibit promising antimicrobial activity.

Controlling the Kinetics of Self-Reproducing Micelles by Catalyst Compartmentalization in a Biphasic System

Post, Elias A. J.,Fletcher, Stephen P.

, p. 2741 - 2755 (2019/02/26)

Compartmentalization of reactions is ubiquitous in biochemistry. Self-reproducing lipids are widely studied as chemical models of compartmentalized biological systems. Here, we explore the effect of catalyst location on copper-catalyzed azide-alkyne cycloadditions which drive the self-reproduction of micelles from phase-separated components. Tuning the hydrophilicity of the copper-ligand complex, so that hydro-phobic or -philic catalysts are used in combination with hydro-philic and -phobic coupling partners, provides a wide range of reactivity patterns. Analysis of the kinetic data shows that reactions with a hydrophobic catalyst are faster than with a hydrophilic catalyst. Diffusion-ordered spectroscopy experiments suggest compartmentalization of the hydrophobic catalyst inside micelles while the hydrophilic catalyst remains in the bulk aqueous phase. The autocatalytic effects observed can be tuned by varying reactant structure and coupling a hydrophilic alkyne and hydrophobic azide results in a more pronounced autocatalytic effect. We propose and test a model that rationalizes the observations in terms of the phase behavior of the reaction components and catalysts.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 70223-97-1