Welcome to LookChem.com Sign In|Join Free

CAS

  • or

709-82-0

Post Buying Request

709-82-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

709-82-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 709-82-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 7,0 and 9 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 709-82:
(5*7)+(4*0)+(3*9)+(2*8)+(1*2)=80
80 % 10 = 0
So 709-82-0 is a valid CAS Registry Number.

709-82-0Relevant articles and documents

Solvent reorganization controls the rate of proton transfer from neat alcohol solvents to singlet diphenylcarbene

Peon, Jorge,Polshakov, Dmitrii,Kohler, Bern

, p. 6428 - 6438 (2002)

Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with λmax ≈ 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular protontransfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.

Solvolytic Behavior of Aryl and Alkyl Carbonates. Impact of the Intrinsic Barrier on Relative Reactivities of Leaving Groups

Mati?, Mirela,Kati?, Matija,Denegri, Bernard,Kronja, Olga

, p. 7820 - 7831 (2017/08/14)

The effect of negative hyperconjugation on the solvolytic behavior of carbonate diesters has been investigated kinetically by applying the LFER equation log k = sf(Ef + Nf). The observation that carbonate diesters solvolyze faster than the corresponding carboxylates and that the enhancement of aromatic carbonates is more pronounced indicates that the negative hyperconjugation and π-resonance within the carboxylate moiety is operative in TS. The plots of ΔG? vs approximated ΔrG° for solvolysis of benzhydryl aryl/alkyl carbonates and benzhydryl carboxylates reveal that a given carbonate solvolyzes over the higher Marcus intrinsic barrier and over the earlier transition state than carboxylate that produces an anion of similar stability. Due to the lag in development of the electronic effects along the reaction coordinate, the impact of the intrinsic barrier on solvolytic behavior of carbonates is more important than in the case of carboxylates and phenolates. Consequently, the solvolytic reaction constants (sf) are generally lower for carbonates than for carboxylates. Because of considerable lower reaction constants of carbonates, an inversion of relative reactivities between aryl/alkyl carbonate and another leaving group of similar nucleofugality (Nf) may occur if the electrofuge moiety of a substrate is switched.

Solvolytic Behavior of Aliphatic Carboxylates

Matic, Mirela,Denegri, Bernard,Kronja, Olga

supporting information, p. 1477 - 1486 (2015/10/05)

The leaving group abilities (nucleofugalities) of a series of aliphatic carboxylates have been obtained by determining the nucleofuge-specific parameters (Nf and sf) from solvolysis rate constants of X,Y-substituted benzhydryl carboxylates in a series of aqueous ethanol mixtures by applyication of the linear free energy relationship (LFER) equation: log k = sf (Ef + Nf). These values can be employed to compare reactivities of carboxylates with those of other leaving groups previously included in the nucleofugality scale, and also to estimate the solvolysis rates of various carboxylates. It is confirmed that the inductive effect is the most important variable governing the reactivities of halogenated carboxylates in solution. Moreover, both the Hammett correlation and the solvolytic activation parameters have revealed a strong influence of the inductive effect on the nucleofugality of alkyl-substituted carboxylates. The reaction constants (sf) indicate that carboxylate substrates with weaker leaving groups solvolyze via later, more carbocation-like, transition states, which is in accord with the Hammond postulate. In addition, due to the weaker demand for solvation of transition states that produce more strongly stabilized benzhydrylium ions, in which more efficient charge delocalization occurs, the reaction constants (sf) obtained with most of the leaving groups investigated here increase as the polarity of the solvent decreases.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 709-82-0