Welcome to LookChem.com Sign In|Join Free

CAS

  • or

71751-41-2

Post Buying Request

71751-41-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

71751-41-2 Usage

Description

Abamectin is a colorless to yellowish crystalline powder derived from the soil bacterium Streptomyces avermitilis. It is a mixture of Abamectins containing about 80% Abamectin B1a and 20% Abamectin B1b, which have similar biological and toxicological properties. Abamectin is soluble in acetone, methanol, toluene, chloroform, and ethanol, but insoluble in water. It is stable and has a broad-spectrum, high efficiency, and safety profile. Its mechanism of action involves interfering with the neuro-physiological activity of pests, affecting the transmission of cellular membrane chloride with GABA being the target site.

Uses

Used in Agricultural Industry:
Abamectin is used as an acaricide, miticide, and insecticide for the control of mite and insect pests on fruit, vegetable, and ornamental crops, including pears, citrus fruits, and nut crops. It is also used to control household and lawn insects, such as fire ants. It has strong stomach poisoning and contact-killing effects, causing rapid paralysis of pests within hours, poor feeding, and slow movement or immobility. It is particularly efficient in treating insect pests resistant to other pesticides.
Used in Citrus, Vegetables, Cotton, Apples, Tobacco, Soybeans, and Tea:
Abamectin is used for the prevention and treatment of various kinds of pests, such as diamondback moth, cabbage caterpillar, armyworm, and flea, with good control efficacy and delayed resistance.
Used in Livestock and Poultry:
Abamectin has a driving and killing effect on nematodes, insects, and mites. It is used for the treatment of nematode disease, mite disease, and parasitic diseases of livestock and poultry. The dosage for controlling parasitic diseases is 0.2mg/kg of body weight.
Used as a CNS Stimulator and Mutagen:
Abamectin is also used as a central nervous system (CNS) stimulator and mutagen, although the specific applications and reasons for these uses are not detailed in the provided materials.
General Use Pesticide (GUP):
Abamectin is classified as a general use pesticide (GUP) and is grouped as toxicity class IV, meaning it is practically non-toxic, requiring no precautionary statement on its label. It is approved by the EPA for use in ash trees for the control of the emerald ash borer and is a U.S. EPA restricted Use Pesticide (RUP).

Bio-pesticides

Abamectin is a kind of 16-membered ring macrolide compound which was first developed by the Kitasato University in Japan and Merck Company (United States). It has insecticidal, acaricidal, and nematicidal activity. It is produced by the fermentation of Streptomyces avermitilis. Natural Abamectin containing eight component with four major components namely A1a, A2a, B1a and B2a with the total content being ≥80%; another four components corresponding to smaller proportion are A1b, A2b, B1b, and B2b with the total content of ≤20%. Currently commercialized Abamectin pesticide has abamectin as the main insecticidal ingredient (Abamectin B1a + B1b with B1a being not less than 90% and B1b being less than 5%). It is calibrate by the content of B1a. Since 1991 when abamectin had entered into the market of pesticides in China, Abamectin pesticide has played an important role in the pest prevention and control system of China. Abamectin is currently produced by over tens companies in China with the currently marketed Abamectin series pesticides including abamectin, ivermectin and emamectin benzoate. In the late 1980s, Shanghai Institute of pesticides of China has isolated and screened the 7051 strain from Guangdong Jieyang soil. Identification analysis had proved that this strain is quite similar with S.avermitilis Ma-8460 and can produce a compound with the same chemical structure as Abamectin. In 1993, the new technology Development Corporation of Beijing Agricultural University had initiated research project for development and production of this drug. Abamectin is a new class of antibiotics characterized with a novel structure and dual application to both crops and livestock. With the improvement of people's living standards as well as the demanding for green good, bio-pesticides is quite preferred in current pesticide market. According to the pundits’ prediction, the 21st century will be the century of biological pesticides. It is reported that the European bio-pesticides sales increased from 100 million dollar (1997) to 160 million dollars in 2004. Abamectin is the most popular and highly competitive novel biological pesticide in currently bio-pesticide market.

Active Pharmaceutical Ingredient

Abamectin has its original drug be white or yellow-white crystalline powder with an active ingredient content being 75% to 80%, specific gravity being 1.16, melting point being 155~157 ℃, and vapor pressure being 2 × 10-7pa. At 21℃ It has a solubility being 7.8 g/liter in water, 100 mg/mL in acetone, 20 mg/mL in ethanol, 19.5 mg/mL in methanol, 10 mg/mL in chloroform, 6 mg/mL in ring hexane, 70 mg/mL in isopropyl alcohol, 0.5 mg/mL in kerosene, and 350 mg/mL in toluene. At room temperature is not easy to be decomposed. At 25 ℃, no decomposition is observed for its solution of pH6~9. The Appearance of its preparation is light brown liquid. Its preparation can be stored stably at room temperature for more than 2 years. Toxicity: According to Chinese pesticide toxicity grading standards, Abamectin belongs to highly toxic pesticides. For original drug; acute oral-rat LD50: l0 mg/kg; acute oral-mice LD50: 13 mg/kg; acute percutaneous administration-rabbits LD50: greater than 2000 mg/kg; acute percutaneous administration-rat LD50: greater than 380 mg/kg; acute inhalation-rat LC50 greater than 5.7 mg/liter; It has no skin irritation effect but with slight stimulus on eyes. It has no teratogenic, carcinogenic, and mutagenic effect on animals within experimental dose. For three generations of breeding experiments in rats, the non-effect dose is 0.12 mg/kg/day. For rats in two years, the non-effect dose in rats is 2 mg/kg/day. It is highly toxic to aquatic organisms. Trout-96 hours LD50:3.6 mg /l; bluegill sunfish-96 hours LC50: 9.6 micrograms/liter. It is also highly toxic to bees, oral-LD50: 0.009 g/head, contact-LD50: 0.002 g/head; However, the LT50 of its residue in the foliage is 4 hours. After 4 hours, the residue drug in the foliage agent is of low toxicity to bees. It has low toxicity to birds; quail, acute-oral LD50: greater than 2000 mg/kg, ducks, acute-oral LD50: 86.4 mg/kg. For the preparation, rat acute-oral LD50: 650 mg/kg, rabbits acute-percutaneous LD50: greater than 2000 mg/kg. Rat acute-inhalation LD50: 1.1 mg/liter. It has irritation effect on eye and skin. Its preparation is 1.8% Abamectin EC (18 g active ingredient contained per liter)

Precautions

1. Abamectin has a slow insecticide, acaricide action with the number of dead insects reaching peak after three days. However, its application can immediately cause the feeding stop and spread of the pests. 2. Abamectin is highly toxic to fish, so avoid the contamination of rivers, ponds when spraying. Avoid spraying upon the foraging period of honeybees.

Precautions

During use of Abamectin, occupational workers should use safety glasses, gloves, and protective clothing to prevent prolonged skin contact, and work in good ventilation.

Poultry anti-parasitic drugs

Abamectin tablet Specifications: 2mg/sheet For the treatment of various kinds of nematodes, ticks, mites, fleas, lice and flies of horses, cattle, sheep, pigs, dogs, cats and other poultry both in vivo and in vitro. Oral absorption for horse has a high efficacy (killing rate being 95% to 100%) on large round worm (common round worm, horse round worm, round worm without teeth), roundworm (Parascaris equorum), Enterobius (Oxyuris equi), stomach worms (Grand discreet Rasi nematodes, Hebronema nematodes), intestinal nematodes (trichostrongylus axei, Strongyloides), lung nematodes (dictyocaulus arnfieldi) and other adults worm and larvae). Oral or subcutaneous administration of Abamectin for cattle, sheep has a high killing rate (97% to 100%) on Haemonchus, Ostertagia, Cooperia, Trichostrongyle (Trichostrongyle axei), round worm, Bunostomum, Nematodirus spp, Trichuris, Dictyocaulus, Chabertia ovina imago and 4-phase larva. Oral administration or orally administration together with spice; the amount per time: 1. horses, cows, donkeys, mules, and sheep: take 1 tablet per 10kg of body weight. 2. pigs, fox, dogs, and cats: take 1 tablet per 6 kg of body weight; for treatment of Demodex canis, take one tablet per 3 kg of body weight; take continuously for five times at the interval of seven days. 3. chickens, ducks, geese, rabbits, and pigeons: take 1 tablet per 6~8 kg weight.

Analysis Methods

High Performance Liquid Chromatography.

Characteristics of avermectin series agents

1. broad spectrum insecticide The current reported insecticide spectrum of Abamectin contains 84 species. In China, it is mainly used for control of pests with small body, multiple generations and being prone to become drug-resistant such as pear psylla, and cotton aphid, leaf mining pests such as the Inter-American Blanchard, pest mites such as Tetranychus urticae, Calacarus carinatus Green, Tetranychus viennensis and pests with wide range of hosts and miscellaneous eating habits such as Plutella xylostella. 2. the unique mechanism of killing pests Abamectin is a nerve toxic agent. Its mechanism is targeting to the GABAA receptor of insect neuron synapse or neuromuscular synapse, interfering with the information transfer of nerve endings, namely stimulating the nerve endings to release neurotransmitter inhibitor γ-aminobutyric acid (GA-BA), prompting the extensive opening of the GABA-gated chloride channel with chloride channel-activating effect. In this case, large influx of chloride ions cause nerve membrane potential being hyperpolarized, resulting in the inhibition of the nerve membrane, and thereby blocking the contact between nerve endings and muscle, thus causing insect paralysis, poor feeding, and death. Because of its unique mechanism of action, it has no cross-resistance with commonly-used agents. According to reports, in addition to GABA receptors controlled chloride channels, Abamectin can also affect other ligand-controlled chloride channels. For example, Ivermectin can induce the irreversible increase of membrane conduction of muscle fibers (non GABA innervations) of locust.

Excellent stratification flow activity

Stratification flow activity refers to that: after its spray, Abamectin can penetrate into the leaf tissue and form a drug sac inside epidermis parenchyma cells for long-term storage, so Abamectin has good persistence. Because of its good stratification flow activity, Abamectin has good efficacy on killing pests such as pest mites, leaf miner flier, leaf miner moth and other borer pests or sucking insects that are difficult to be prevented and treated with common drugs. Abamectin is easily biodegradable in soil and water and can be absorbed by the soil without leaching and residue and do not pollute the environment; it also has no accumulation in vivo and no residual accumulation and persistence, and thus Abamectin should belong to pollution-free pesticides. Abamectin can also be broken down by the soil bacteria into derivatives having higher activity such as the insecticidal activity of plant nematodes.

The current status and countermeasure of organism resistance to avermectin

There are many foreign studies regarding to the organism resistance and resistance mechanism on Abamectin. In 1980, Scott and Geoghiou had first discovered anti-pyrethroid indoor resistant-selection housefly strain (LPR) has 7.6-fold cross-resistance on abamectin. Further study showed that this phenomenon is due to the increased metabolism of multi-function oxidase (MFO) and reduced skin penetration with reduction of the skin penetration as the major resistance mechanism and is highly recessive inheritance. In 1991, Gampos and Dybas had discovered that two-spotted spider mites are resistant to abamectin with its resistance being also related to epidermis penetration and oxidative metabolism, and the development of the resistance of two-spotted spider mite to Abamectins is related to the duration of medication. Its resistance genetic is incomplete autosomal recessive inheritance. During the study on drug resistance selection of diamondback moth, Li Tengwu et al have found that genetic resistance to abamectin in Diamondback Moth is also incomplete autosomal recessive inheritance. Argentine and Clark has discovered the resistance of potato beetle on Abamectin with the mechanisms also being related to multi-function oxidase and carboxylesterase with its resistance heredity being similar to diamondback moth and T. urticae, namely also belonging to autosomal incompletely recessive inheritance. It has found that clover leaf miner, diamondback moth, and German cockroach also have certain resistance to abamectin.

Toxicity

CF mice acute-oral LD50: 13.6~23.8 mg/kg, CRCD mice: 10.6~11.3mg/kg, CRCD neonatal rats: 1.52mg/kg. The minimum dose for causing effect is: CR: CD neonatal rats daily: 0.12mg/kg, CRCD rats daily: 2.0mg/kg, Beagle dogs daily: 0.5mg/kg, monkeys daily: 2.0mg/kg. Rabbit, acute-percutaneous LD50> 2000mg/kg; Rats continuous administration: 8 weeks, the mice continuously administered: 94 weeks, non-effect daily dose: 4mg/kg, 2-year feeding rat, non-effect dose of 2mg/kg. Teratogenicity has showed that the non-effect dose of maternal toxicity in rats was 0.05mg/kg, and in mice was 1.6mg/kg. Ames test has showed that there was no genetic toxicity and no carcinogenic effects. Trout LC50: 3.2μg/L, carp LC50: 4.2μg/L, Daphnia LC50: 0.34 μg/L, diphtheria quail LD50: 2000mg/kg, ducks acute-oral LD50: 86.4mg/kg. Bees oral, LD50: 0.009μg; contact, LD50: 0.002μg/only.

Reactivity Profile

A lactone.

Hazard

A poison by ingestion. Moderately toxic by inhalation and skin contact.

Health Hazard

Abamectin is an insecticide and miticide. It is very toxic and causes adverse health effects if swallowed and/or inhaled. Emulsifi able concentrate formulations of Abamectin cause slight to moderate eye irritation and mild skin irritation. The symptoms of poisoning observed in laboratory animals include pupil dilation, vomiting, convulsions and/or trem- ors, and coma. Abamectin acts on insects by interfering with the nervous system. At very high doses, laboratory mammals develop symptoms of nervous system depression, inco- ordination, tremors, lethargy, excitation, and pupil dilation. Very high doses have caused death from respiratory failure in animals. Additionally, Abamectin has been reported to cause reproductive effects. Abamectin blocks the nerval conduct system in insects, caus- ing paralysis and death. Laboratory studies have indicated that abamectin may affect the nervous system in experimental animals. A 1-year study with dogs given oral doses of abamectin (0.5 and 1 mg/kg/day) caused adverse health effects, such as pupil dilation, weight loss, lethargy, tremors, and recumbency.

Trade name

ABACIDE?; AFFIRM?; AVID?, AVID-EC?; AVOMEC?; DYNAMEC?; INJECT-A- CIDE AV?; MK 936?(B 1A ); BOVITIN?; DORATECT?; DUOMECTIN?; DUOTIN?; ENDECTO?; ENZEC?; L 676,863? (B 1A ); MK 0936?; MK 936?; PARAFOIL?; VERTIMEC?, VERTIMIL?; VIVID?; ZECTIN?; ZEPHEYR?; ZEPHYR?

Metabolic pathway

Abamectin contains the closely related avermectin B1a and B1b as the active ingredients. Avermectin B1a contains a sec-butyl moiety whereas avermectin B1b contains an isopropyl moiety. Chemical degradation and metabolism studies were conducted with avermectin B1a radiolabelled with 3H or 14C at various positions of this large molecule. The overall fates of avermectin B1a and B1b are similar since transformations at the butyl or propyl moiety were not observed. Avermectin B1a is stable to hydrolytic degradation, but it is readily degraded to numerous products in aqueous solutions, soil, glass and plant foliage/fruit surfaces after light irradiation. Isomerisation and O-demethylation appear to the primary degradation reactions. In addition, hydroxylation is a major metabolic reaction in animals. Significant amounts of the residues in plants and animals were characterised as unidentified polar components.

Degradation

[3H]Avermectin B1a(1) was stable at 25 °C in pH 5,7 and 9 solutions up to 28 days. Less than 5% degradation was observed (PSD, 1992). [14C]Avermectin B1a degraded rapidly in aqueous solution when exposed to sunlight with an observed DT50 of 3.5-12 hours. The △8,9 geometric isomer of avermectin B1a (2) was tentatively identified in aqueous solution (containing 2% acetone as photosensitiser) after irradiation under artificial light. Crouch et al. (1991) reported the photodegradation of avermectin B1a, as a thin film on glass surfaces under artificial light (>260 nm). At least 10 photodegradation products were characterised including the geometric isomers (2, 3), hydroxylated (4-7) and O-demethylated products (8) shown in Scheme 1.

Check Digit Verification of cas no

The CAS Registry Mumber 71751-41-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,1,7,5 and 1 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 71751-41:
(7*7)+(6*1)+(5*7)+(4*5)+(3*1)+(2*4)+(1*1)=122
122 % 10 = 2
So 71751-41-2 is a valid CAS Registry Number.
InChI:InChI=1/C48H72O14/c1-11-25(2)43-28(5)17-18-47(62-43)23-34-20-33(61-47)16-15-27(4)42(26(3)13-12-14-32-24-55-45-40(49)29(6)19-35(46(51)58-34)48(32,45)52)59-39-22-37(54-10)44(31(8)57-39)60-38-21-36(53-9)41(50)30(7)56-38/h12-15,17-19,25-26,28,30-31,33-45,49-50,52H,11,16,20-24H2,1-10H3/b13-12+,27-15-,32-14-/t25-,26-,28-,30-,31-,33+,34-,35-,36-,37-,38-,39-,40+,41-,42-,43+,44-,45+,47+,48+/m0/s1

71751-41-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name Abamectin

1.2 Other means of identification

Product number -
Other names affirm

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:71751-41-2 SDS

71751-41-2Upstream product

71751-41-2Downstream Products

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 71751-41-2