Welcome to LookChem.com Sign In|Join Free

CAS

  • or

724-37-8

Post Buying Request

724-37-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

724-37-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 724-37-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 7,2 and 4 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 724-37:
(5*7)+(4*2)+(3*4)+(2*3)+(1*7)=68
68 % 10 = 8
So 724-37-8 is a valid CAS Registry Number.

724-37-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzyl-2-fluorobenzamide

1.2 Other means of identification

Product number -
Other names (2-fluorophenyl)-N-benzylcarboxamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:724-37-8 SDS

724-37-8Relevant articles and documents

N -Heterocyclic carbene (NHC) catalyzed amidation of aldehydes with amines via the tandem N -hydroxysuccinimide ester formation

Singh, Ashmita,Narula

supporting information, p. 7486 - 7490 (2021/05/13)

A facile method for the amidation of aldehydes by a cascade approach was developed. This methodology, reported for the first time, uses a N-heterocyclic carbene (NHC) as the catalyst, and N-hydroxysuccinimide (NHS) mediated synthesis of amides utilising TBHP as the oxidant. Various substituted aldehydes reacted smoothly with NHS giving the corresponding active esters in moderate to good yields, which facilely converted into amides in one pot. In addition, the drug moclobemide was synthesized to represent the practical utility of the developed methodology. This journal is

Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: The influence of catalyst loadings, ancillary and added ligands

Wang, Wan-Qiang,Wang, Zhi-Qin,Sang, Wei,Zhang, Rui,Cheng, Hua,Chen, Cheng,Peng, Da-Yong

, (2021/01/05)

The metal-catalyzed dehydrogenative coupling of alcohols and amines to access amides has been recognized as an atom-economic and environmental-friendly process. Apart from the formation of the amide products, three other kinds of compounds (esters, imines and amines) may also be produced. Therefore, it is of vital importance to investigate product distribution in this transformation. Herein, N-heterocyclic carbene-based Ru (NHC/Ru) complexes [Ru-1]-[Ru-5] with different ancillary ligands were prepared and characterized. Based on these complexes, we selected condition A (without an added NHC precursor) and condition B (with an added NHC precursor) to comprehensively explore the selectivity and yield of the desired amides. After careful evaluation of various parameters, the Ru loadings, added NHC precursors and the electronic/steric properties of ancillary NHC ligands were found to have considerable influence on this catalytic process.

Nickel-Catalyzed C-F/N-H Annulation of Aromatic Amides with Alkynes: Activation of C-F Bonds under Mild Reaction Conditions

Bai, Ruopeng,Chatani, Naoto,Lan, Yu,Liu, Song,Nohira, Itsuki

supporting information, p. 17306 - 17311 (2020/11/13)

The Ni-catalyzed reaction of ortho-fluoro-substituted aromatic amides with alkynes results in C-F/N-H annulation to give 1(2H)-isoquinolinones. A key to the success of the reaction is the use of KOtBu or even weak base, such as Cs2CO3. The reaction proceeds in the absence of a ligand and under mild reaction conditions (40-60 °C). DFT calculations suggest that the pathway for this Ni-catalyzed C-F/N-H annulation involves N-H deprotonation, oxidative addition of a C-F bond, migratory insertion of an alkyne, and reductive elimination to form 1(2H)-isoquinolinone derivatives.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 724-37-8