Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7459-35-0

Post Buying Request

7459-35-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7459-35-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7459-35-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,5 and 9 respectively; the second part has 2 digits, 3 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 7459-35:
(6*7)+(5*4)+(4*5)+(3*9)+(2*3)+(1*5)=120
120 % 10 = 0
So 7459-35-0 is a valid CAS Registry Number.
InChI:InChI=1/C18H33ClO/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3/b10-9+

7459-35-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name (9E)-9-Octadecenoyl chloride

1.2 Other means of identification

Product number -
Other names Sodium oleylsulfonate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7459-35-0 SDS

7459-35-0Relevant articles and documents

Decarboxylative Borylation of mCPBA-Activated Aliphatic Acids

Wei, Dian,Liu, Tu-Ming,Zhou, Bo,Han, Bing

supporting information, p. 234 - 238 (2020/01/02)

A decarboxylative borylation of aliphatic acids for the synthesis of a variety of alkylboronates has been developed by mixing m-chloroperoxybenzoic acid (mCPBA)-activated fatty acids with bis(catecholato)diboron in N,N-dimethylformamide (DMF) at room temperature. A radical chain process is involved in the reaction which initiates from the B-B bond homolysis followed by the radical transfer from the boron atom to the carbon atom with subsequent decarboxylation and borylation.

Discovery of Hydrolysis-Resistant Isoindoline N -Acyl Amino Acid Analogues that Stimulate Mitochondrial Respiration

Lin, Hua,Long, Jonathan Z.,Roche, Alexander M.,Svensson, Katrin J.,Dou, Florence Y.,Chang, Mi Ra,Strutzenberg, Timothy,Ruiz, Claudia,Cameron, Michael D.,Novick, Scott J.,Berdan, Charles A.,Louie, Sharon M.,Nomura, Daniel K.,Spiegelman, Bruce M.,Griffin, Patrick R.,Kamenecka, Theodore M.

supporting information, p. 3224 - 3230 (2018/04/23)

N-Acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. We found that administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure, indicating that this pathway might be useful for treating obesity and associated disorders. We report the full account of the synthesis and mitochondrial uncoupling bioactivity of lipidated N-acyl amino acids and their unnatural analogues. Unsaturated fatty acid chains of medium length and neutral amino acid head groups are required for optimal uncoupling activity on mammalian cells. A class of unnatural N-acyl amino acid analogues, characterized by isoindoline-1-carboxylate head groups (37), were resistant to enzymatic degradation by PM20D1 and maintained uncoupling bioactivity in cells and in mice.

Electrospray ionization and collision induced dissociation mass spectrometry of primary fatty acid amides

Divito, Erin B.,Davic, Andrew P.,Johnson, Mitchell E.,Cascio, Michael

experimental part, p. 2388 - 2394 (2012/07/27)

Primary fatty acid amides are a group of bioactive lipids that have been linked with a variety of biological processes such as sleep regulation and modulation of monoaminergic systems. As novel forms of these molecules continue to be discovered, more emphasis will be placed on selective, trace detection. Currently, there is no published experimental determination of collision induced dissociation of PFAMs. A select group of PFAM standards, 12 to 22 length carbon chains, were directly infused into an electrospray ionization source Quadrupole Time of Flight Mass Spectrometer. All standards were monitored in positive mode using the [M + H]+ peak. Mass Hunter Qualitative Analysis software was used to calculate empirical formulas of the product ions. All PFAMs showed losses of 14 m/z indicative of an acyl chain, while the monounsaturated group displayed neutral losses corresponding to H2O and NH3. The resulting spectra were used to propose fragmentation mechanisms. Isotopically labeled PFAMs were used to validate the proposed mechanisms. Patterns of saturated versus unsaturated standards were distinctive, allowing for simple differentiation. This determination will allow for fast, qualitative identification of PFAMs. Additionally, it will provide a method development tool for selection of unique product ions when analyzed in multiple reaction monitoring mode.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7459-35-0