Welcome to LookChem.com Sign In|Join Free

CAS

  • or

81276-02-0

Post Buying Request

81276-02-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

81276-02-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 81276-02-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,1,2,7 and 6 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 81276-02:
(7*8)+(6*1)+(5*2)+(4*7)+(3*6)+(2*0)+(1*2)=120
120 % 10 = 0
So 81276-02-0 is a valid CAS Registry Number.
InChI:InChI=1/C20H32O3/c1-2-3-4-5-9-12-15-18-19(23-18)16-13-10-7-6-8-11-14-17-20(21)22/h6,8-10,12-13,18-19H,2-5,7,11,14-17H2,1H3,(H,21,22)/b8-6+,12-9+,13-10+

81276-02-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (+/-)11,12-EPOXYEICOSA-5Z,8Z,14Z-TRIENOIC ACID

1.2 Other means of identification

Product number -
Other names 11,12-EET

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:81276-02-0 SDS

81276-02-0Downstream Products

81276-02-0Relevant articles and documents

Anthracycline derivatives inhibit cardiac CYP2J2

Kim, Justin S.,Arango, Andres S.,Shah, Swapnil,Arnold, William R.,Tajkhorshid, Emad,Das, Aditi

, (2022/01/26)

Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.

Lipoxygenase-catalyzed transformation of epoxy fatty acids to hydroxy-endoperoxides: A potential P450 and lipoxygenase interaction

Teder, Tarvi,Boeglin, William E.,Brash, Alan R.

, p. 2587 - 2596 (2015/02/19)

Herein, we characterize a generally applicable transformation of fatty acid epoxides by lipoxygenase (LOX) enzymes that results in the formation of a five-membered endoperoxide ring in the end product. We demonstrated this transformation using soybean LOX-1 in the metabolism of 15,16-epoxy-α-linolenic acid, and murine platelet-type 12-LOX and human 15-LOX-1 in the metabolism of 14,15-epoxyeicosatrienoic acid (14,15-EET). A detailed examination of the transformation of the two enantiomers of 15,16-epoxy-α-linolenic acid by soybean LOX-1 revealed that the expected primary product, a 13 S-hydroperoxy-15,16-epoxide, underwent a nonenzymatic transformation in buffer into a new derivative that was purifi ed by HPLC and identified by UV, LC-MS, and 1H-NMR as a 13,15-endoperoxy-16-hydroxy-octadeca-9,11-dienoic acid. The configuration of the endoperoxide (cis or trans side chains) depended on the steric relationship of the new hydroperoxy moiety to the enantiomeric configuration of the fatty acid epoxide. The reaction mechanism involves intramolecular nucleophilic substitution (SNi) between the hydroperoxy (nucleophile) and epoxy group (electrophile). Equivalent transformations were documented in metabolism of the enantiomers of 14,15-EET by the two mammalian LOX enzymes, 15-LOX-1 and platelet-type 12-LOX. We conclude that this type of transformation could occur naturally with the co-occurrence of LOX and cytochrome P450 or peroxygenase enzymes, and it could also contribute to the complexity of products formed in the autoxidation reactions of polyunsaturated fatty acids.

Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human cytochromes P450

Lucas, Daniele,Goulitquer, Sophie,Marienhagen, Jan,Fer, Maude,Dreano, Yvonne,Schwaneberg, Ulrich,Amet, Yolande,Corcos, Laurent

experimental part, p. 1125 - 1133 (2010/09/16)

Cytochromes P450 (CYPs) metabolize polyun-saturated long-chain fatty acids (PUFA-LC) to several classes of oxygenated metabolites. Through use of human recombinant CYPs, we recently showed that CYP1A1, -2C19, -2D6, -2E1, and -3A4 are mainly hydroxylases, whereas CYP1A2, -2C8, -2C9, and -2J2 are mainly epoxygenases of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), respectively. It is worth noting that the last double bond of these PUFAs, i.e., ω6 in AA or ω3 in EPA and DHA, respectively, was preferentially epoxidized. In this study, we have characterized the stereoselectivity of this epoxidation reaction by comparison with the PUFA-LC epoxide stereoisomers obtained from the enantioselective bacterial CYP102A1 F87V. The stereoselectivity of the epoxidation of the last olefi n of AA (ω6), EPA (ω3), or DHA (ω3) differed between the CYP isoforms but was similar for EPA and DHA. These data give additional insight into the PUFA-LC epoxide enantiomers generated by the hepatic CYPs. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 81276-02-0