Welcome to LookChem.com Sign In|Join Free

CAS

  • or

85-00-7

Post Buying Request

85-00-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

85-00-7 Usage

Description

Diquat (DQ) is a bipyridyl herbicide that has been in use since the 1950s. It is employed as a general use herbicide that is fast acting and nonselective. Additionally, on average, 90% of DQ consumption is reported in North America, Europe, Australia, and Japan.

Chemical Properties

Pale yellow crystals; forms monohydrate; mp320°C (608 °F) (decomposes); readily solublein water, insoluble in organic solvents; stablein acids or neutral solution.

Uses

Different sources of media describe the Uses of 85-00-7 differently. You can refer to the following data:
1. DQ is used in a manner similar to paraquat. It is found predominantly as a mixture with paraquat, sold as Weedol and Pathclear. The most widely used formulation of DQ alone, Reglone, is an aqueous solution containing 200 g l-1 DQ dibromide. Besides the use as a general weed control agent on noncrop land, DQ is used as a preharvest desiccant on crops such as cotton, flax, and alfalfa. Additionally, almost one-third of all DQ sold is used to control emergent and subemergent aquatic weeds.
2. Diquat Dibromide is a herbicidal desiccant.
3. Nonselective contact herbicide used to control broad-leaved weeds in fruit and vegetable crops.

Health Hazard

The acute toxicity of diquat dibromide ismoderate to high in most species. In domes-tic animals, its toxicity is greater than thatin small laboratory animals. The oral LD50value in cows, dogs, rabbits, and mice is30, 187, 188, and 233 mg/kg, respectively.The symptoms of acute toxicity are somnolence, lethargy, pupillary dilation, and respiratory distress. Prolonged exposure to thiscompound produced cataracts in experimental animals. Intratracheal administration ofdiquat dibromide in rats showed toxic effectsin the lung and caused lung damage (Manabeand Ogata 1986). But when administered byoral or intravenous routes, there was no toxiceffect on the lung.

Flammability and Explosibility

Notclassified

Safety Profile

Poison by ingestion, subcutaneous, intravenous, and intraperitoneal routes. Experimental teratogenic and reproductive effects. A skin and eye irritant. Human mutation data reported. When heated to decomposition it emits very toxic fumes of NOx, and Br-. See also PARAQUAT

Environmental Fate

Biological. Under aerobic and anaerobic conditions, the rate of diquat mineralization in eutrophic water and sediments was very low. After 65 days, only 0.88 and 0.21% of the applied amount (5 μg/mL) evolved as carbon dioxide (Simsiman and Chesters, 1976). Diquat is readily mineralized to carbon dioxide in nutrient solutions containing microorganisms. The addition of montmorillonite clay in an amount equal to adsorb one-half of the diquat decreased the amount of carbon dioxide by 50%. Additions of kaolinite clay had no effect on the amount of diquat degraded by microorganisms (Weber and Coble, 1968).Photolytic. Diquat has an absorption maximum of 310 nm (Slade and Smith, 1967). The sunlight irradiation of a diquat solution (0.4 mg/100 mL) yielded 1,2,3,4-tetrahydro1-oxopyrido[1,2-a]-5-pyrazinium chloride (TOPPS) as the principal metabolite.Chemical/Physical. Decomposes at 320°C (Windholz et al., 1983) emitting toxic fumes of bromides and nitrogen oxides (Lewis, 1990). Diquat absorbs water forming wellde?ned, pale yellow crystalline hydrate (Calderbank and Slade, 1976).In aqueous alkaline solutions, diquat decomposes forming complex colored products including small amounts of dipyridone (Calderbank and Slade, 1976).

Toxicity evaluation

DQ is a dipyridyl compound that is capable of redox cycling. DQ can become reduced to produce a free radical. It can then transfer this electron to molecular oxygen to yield superoxide anion. This redox cycling mechanism allows DQ to generate reactive oxygen species (ROS) resulting in oxidative stress, damage to cellular macromolecules and even cell death. Due to its standard redox potential (E0), DQ is more likely to accept an electron compared to paraquat. Because of this property, DQ is expected to generate greater amounts of ROS compared to paraquat at equivalent concentrations. In vitro studies have shown that DQ is dependent on mitochondrial complex I and III in isolated mitochondria and primarily complex III in midbrain neuronal cultures for ROS production. DQ treatment can lead to NADPH depletion, lipid peroxidation, alteration in intracellular redox status, and liberation of ferritin-bound iron stores.

Check Digit Verification of cas no

The CAS Registry Mumber 85-00-7 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 8 and 5 respectively; the second part has 2 digits, 0 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 85-00:
(4*8)+(3*5)+(2*0)+(1*0)=47
47 % 10 = 7
So 85-00-7 is a valid CAS Registry Number.
InChI:InChI=1/C12H12N2.2BrH/c1-3-7-13-9-10-14-8-4-2-6-12(14)11(13)5-1;;/h1-8H,9-10H2;2*1H/q+2;;/p-2

85-00-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name diquat dibromide

1.2 Other means of identification

Product number -
Other names DEIQUAT 1-HYDRATE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Herbicide
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:85-00-7 SDS

85-00-7Relevant articles and documents

-

Brian et al.

, p. 446 (1958)

-

Green Synthesis of Leaning Tower[6]arene-Mediated Gold Nanoparticles for Label-Free Detection

Zhang, Hao,Wang, Xin,Huang, Kun-Tao,Liang, Feng,Yang, Ying-Wei

supporting information, p. 4677 - 4682 (2021/06/28)

Here a facile synthesis strategy toward carboxylated leaning tower[6]arene (CLT6)-mediated gold nanoparticles (CLT6-AuNPs) without external energy sources and reducing agents has been developed. Due to the cavity structure of CLT6, CLT6-AuNPs with a controllable particle size show good stability and excellent performance in label-free detection of diquat. Significantly, we reveal the reduction mechanism of AuNP formation, which is the cleavage of some phenyl ether bonds of CLT6 to produce reductive phenols, thus reducing Au3+ to AuNPs.

Covalent Organic Frameworks Enabling Site Isolation of Viologen-Derived Electron-Transfer Mediators for Stable Photocatalytic Hydrogen Evolution

Mi, Zhen,Zhou, Ting,Weng, Weijun,Unruangsri, Junjuda,Hu, Ke,Yang, Wuli,Wang, Changchun,Zhang, Kai A. I.,Guo, Jia

supporting information, p. 9642 - 9649 (2021/03/16)

Electron transfer is the rate-limiting step in photocatalytic water splitting. Viologen and its derivatives are able to act as electron-transfer mediators (ETMs) to facilitate the rapid electron transfer from photosensitizers to active sites. Nevertheless, the electron-transfer ability often suffers from the formation of a stable dipole structure through the coupling between cationic-radical-containing viologen-derived ETMs, by which the electron-transfer process becomes restricted. Herein, cyclic diquats, a kind of viologen-derived ETM, are integrated into a 2,2′-bipyridine-based covalent organic framework (COF) through a post-quaternization reaction. The content and distribution of embedded diquat-ETMs are elaborately controlled, leading to the favorable site-isolated arrangement. The resulting materials integrate the photosensitizing units and ETMs into one system, exhibiting the enhanced hydrogen evolution rate (34600 μmol h?1 g?1) and sustained performances when compared to a single-module COF and a COF/ETM mixture. The integration strategy applied in a 2D COF platform promotes the consecutive electron transfer in photochemical processes through the multi-component cooperation.

Tetrachlorocuprate-bipyridyl quaternary ammonium salt and preparation method and application thereof

-

Paragraph 0013; 0022-0025, (2019/02/03)

The invention belongs to the technical field of fine chemosynthesis and particularly relates to a tetrachlorocuprate-bipyridyl quaternary ammonium salt with weeding and antibacterial dual functions. Acompound prepared from tetrachlorocuprate anions and 1,1'-ethylene-2,2'-bipyridyl cations has a chemical structure represented by a formula (I), i.e., shortened for [EtBiPy][CuCl4]. A preparation method of the compound comprises the steps of preparing a 1,1'-ethylene-2,2'-bipyridyl dibromo salt, preparing the tetrachlorocuprate anions and preparing the tetrachlorocuprate-bipyridyl quaternary ammonium salt. The tetrachlorocuprate-bipyridyl quaternary ammonium salt provided by the invention has relatively high antibacterial capability to Staphylococcus aureus and Escherichia coli and also has arelatively good contact poisoning effect on weeds.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 85-00-7