Welcome to LookChem.com Sign In|Join Free

CAS

  • or

959-98-8

Post Buying Request

959-98-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

959-98-8 Usage

Description

Endosulfan I, also known as Thiometon, is a colorless to brown crystalline compound with a mild odor similar to terpene or sulfur dioxide. It is a pesticide belonging to the organochlorine class and is known for its broad-spectrum insecticidal properties.

Uses

Used in Agriculture:
Endosulfan I is used as an insecticide for controlling a wide range of pests in various crops, including fruits, vegetables, cotton, and tea. It is effective against insects such as aphids, caterpillars, and mites, helping to protect crops from damage and increase yields.
Used in Public Health:
Endosulfan I is also used in public health applications for controlling disease-transmitting insects, such as mosquitoes and flies. Its residual action and effectiveness against various insect species make it a valuable tool in vector control programs aimed at reducing the spread of diseases like malaria and dengue fever.
However, it is important to note that the use of Endosulfan I has been restricted or banned in many countries due to its potential environmental and health risks, including its persistence in the environment, bioaccumulation in the food chain, and potential endocrine-disrupting effects. Alternative safer and more environmentally friendly insecticides are being developed and promoted for use in place of Endosulfan I.

Air & Water Reactions

Insoluble in water. Slowly hydrolyzes to form sulfur dioxide and diol; hydrolyzes more rapidly under basic or acidic conditions.

Reactivity Profile

Endosulfan I is an organochlorine, cyclodiene derivative. Also a sulfite ester. Incompatible with strong oxidizing and reducing agents. Also incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, and epoxides. As an ester Endosulfan I will hydrolyze to form sulfur dioxide and a diol; reaction is more rapid under basic conditions.

Fire Hazard

Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Containers may explode when heated. Runoff may pollute waterways.

Environmental Fate

Soil. Metabolites of endosulfan identified in soils were endosulfandiol (1,4,5,6,7,7- hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dimethanol), endosulfan ether, endosulfan lactone (4,5,6,7,8,8-hexachloro-1,3,3a,4,7,7a-hexahydro-4,7-methane-isobenzofuran-1-one) and endosulfan sulfate (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4- benzodioxathiepin-3,3-dioxide) (Martens, 1977; Dreher and Podratzki, 1988). These compounds, including endosulfan ether, were also reported as metabolites identified in aquatic systems (Day, 1991). Endosulfan sulfate was the major biodegradation product in soils under aerobic, anaerobic and flooded conditions (Martens, 1977). In flooded soils, endolactone was detected only once whereas endodiol and endohydroxy ether were identified in all soils under these conditions. Under anaerobic conditions, endodiol formed in low amounts in two soils (Martens, 1977). Indigenous microorganisms obtained from a sandy loam degraded a-endosulfan to endosulfandiol. This diol was converted to endosulfan a-hydroxy ether and trace amounts of endosulfan ether and both were degraded to endosulfan lactone (Miles and Moy, 1979). Using settled domestic wastewater inoculum, a-endosulfan (5 and 10 mg/L) did not degrade after 28 days of incubation at 25°C (Tabak et al., 1981). Plant. Endosulfan sulfate was formed when endosulfan was translocated from the leaves to roots in both bean and sugar beet plants (Beard and Ware, 1969). In tobacco leaves, a-endosulfan is hydrolyzed to endosulfandiol (Chopra and Mahfouz, 1977). Stewart and Cairns (1974) reported the metabolite endosulfan sulfate was identified in potato peels and pulp at concentrations of 0.3 and 0.03 ppm, respectively. They also reported that the half-life for the conversion of a-endosulfan to b-endosulfan was 60 days. On apple leaves, direct photolysis of endosulfan by sunlight yielded endosulfan sulfate (Harrison et al., 1967). In carnation plants, the half-lives of a-endosulfan stored under four different conditions, non-washed and exposed to open air, washed and exposed to open air, non-washed and placed in an enclosed container and under greenhouse conditions were 6.79, 6.38, 10.45 and 4.22 days, respectively (Céron et al., 1995). Surface Water. Endosulfan sulfate was also identified as a metabolite in a survey of 11 agricultural watersheds located in southern Ontario, Canada (Frank et al., 1982). When endosulfan (a- and b- isomers, 10 mg/L) was added to Little Miami River water, sealed and exposed to sunlight and UV light for 1 week, a degradation yield of 70% was observed. After 2 and 4 weeks, 95% and 100% of the applied amount degraded. The major degradation product was identified as endosulfan alcohol by IR spectrometry (Eichelberger and Lichtenberg, 1971). Photolytic. Thin films of endosulfan on glass and irradiated by UV light (l >300 nm) produced endosulfandiol with minor amounts of endosulfan ether, a lactone, an a-hydroxyether and other unidentified compounds (Archer et al., 1972). When an aqueous solution containing endosulfan was photooxidized by UV light at 90–95°C, 25, 50 and 75% degraded to carbon dioxide after 5.0, 9.5 and 31.0 hours, respectively (Knoevenagel and Himmelreich, 1976). Chemical/Physical. Endosulfan slowly hydrolyzes forming endosulfandiol and endosulfan sulfate (Kollig, 1993; Martens, 1976; Worthing and Hance, 1991). The hydrolysis rate constant for a-endosulfan at pH 7 and 25°C was determined to be 3.2 ′ 10–3/hour, resulting in a half-life of 9.0 days (Ellington et al., 1988). The hydrolysis half-lives are reduced significantly at varying pHs and temperature. At temperatures (pH) of 87.0 (3.12), 68.0 (6.89) and 38.0°C (8.69), the half-lives were 4.3, 0.10 and 0.08 days, respectively (Ellington et al., 1986). Greve and Wit (1971) reported the hydrolysis half-lives of a- endosulfan at 20°C and pH values of 7 and 5.5 were 36 and 151 days, respectively. Emits toxic fumes of chlorides and sulfur oxides when heated to decomposition (Lewis, 1990).

Check Digit Verification of cas no

The CAS Registry Mumber 959-98-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,5 and 9 respectively; the second part has 2 digits, 9 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 959-98:
(5*9)+(4*5)+(3*9)+(2*9)+(1*8)=118
118 % 10 = 8
So 959-98-8 is a valid CAS Registry Number.
InChI:InChI=1/C9H6Cl6O3S/c10-5-6(11)8(13)4-2-18-19(16)17-1-3(4)7(5,12)9(8,14)15/h3-4H,1-2H2/t3-,4+,7+,8-,19+

959-98-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name alpha-endosulfan

1.2 Other means of identification

Product number -
Other names Endosulfan I

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:959-98-8 SDS

959-98-8Relevant articles and documents

Photoinduced Reactions: Part IV - Studies on Photochemical Fate of 6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide (Endosulphan), an Important Insecticide

Dureja, P.,Mukerjee, S. K.

, p. 411 - 413 (2007/10/02)

The photolysis of the cyclodiene insecticide endosulphan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide) has been examined under different conditions, including environmental.Two new photometabolites, photo-α-endosulphan and photo-β-endosulphan have been isolated from α- and β-isomers of endosulphan respectively and characterised on the basis of their 13C NMR spectra and other data.Irradiation in polar solvents gives metabolites similar to those formed under biotic conditions.When exposed to sunlight on plant leaves, α-endosulphane not only forms the photometabolite but also undergoes isomerisation to β-isomer.On the other hand β-isomer is relatively more stable.This explains the relatively longer persistence of β-endosulphan in the environment and may have some significance on their toxicity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 959-98-8