Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1143018-85-2

Post Buying Request

1143018-85-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1143018-85-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1143018-85-2 includes 10 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 7 digits, 1,1,4,3,0,1 and 8 respectively; the second part has 2 digits, 8 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 1143018-85:
(9*1)+(8*1)+(7*4)+(6*3)+(5*0)+(4*1)+(3*8)+(2*8)+(1*5)=112
112 % 10 = 2
So 1143018-85-2 is a valid CAS Registry Number.

1143018-85-2Downstream Products

1143018-85-2Relevant articles and documents

Nucleophilic Addition and α-C-H Substitution Reactions of an Imine Mediated by Dibutylmagnesium and Organolithium Reagents

Dang, Yan,Jia, Chaohong,Li, Yafei,Li, Yahong,Lu, Yanhua,Wang, Yalan,Xia, Yuanzhi,Xu, Man,Zhang, Liang

, (2021)

A series of nucleophilic addition reactions and α-C-H substitution reactions of an imine-containing ligand 2-(2-((((1H-pyrrol-2-yl)methylene)amino)methyl)-1H-pyrrol-1-yl)-N,N-dimethylethan-1-amine (HL1) were reported. The reactions of HL1 with 0.5 and 2 equiv ofnBu2Mg, respectively, gave two complexes of compositions [Mg(L1)2] (1) and [Mg2(L2)2] (2) (H2L2 =N-((1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)methyl)-1-(1H-pyrrol-2-yl)pentan-1-amine). The nucleophilic addition ofnBu2Mg to the C═N bond of the HL1 ligand occurred in the process for the formation of2. Treatment of HL1 with 2 and 1 equiv ofnBuLi generated [Li2(L3)2] (3) (HL3 = 2-(2-(((1-(1H-pyrrol-2-yl)pentylidene)amino)methyl)-1H-pyrrol-1-yl)-N,N-dimethylethan-1-amine) and [Li2(L1)2] (4). An α-C-H substitution of the HC═NR moiety of the HL1 ligand triggered bynBuLi was discovered in the preparation of3. The formation of3demonstrates a new concept for the C-C coupling that involved inert C-H bond activation of HC═NR skeleton. The reactions of HL1 with MeLi,sec-BuLi, and tert-BuLi, respectively, were also examined. The products for both the nucleophilic addition of organolithium reagents to the C═N bond and α-C-H substitution of the HC═NR moiety of the HL1 ligand were determined. The mechanisms for the formations of2and3were rationalized by DFT calculations. The hydroboration reactions catalyzed by2were investigated, and these reactions characterize ample substrate scope, very good yields, and high selectivity.

Catalytic Hydroboration of Esters by Versatile Thorium and Uranium Amide Complexes

Makarov, Konstantin,Kaushansky, Alexander,Eisen, Moris S.

, p. 273 - 284 (2022/01/03)

The challenging hydroboration of esters is achieved using simple uranium and thorium amides, U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ2-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U) acting as precatalysts in the reaction with pinacolborane (HBpin). All three complexes showed impressive catalytic activities, reaching excellent yields. A large scope of esters was investigated including aliphatic, aromatic, and heterocyclic esters that were transformed cleanly to the corresponding hydroborated alcohols, which readily hydrolyzed to the free alcohols. Moreover, the actinide catalysts demonstrated unexpected high functional tolerance toward nitro, halide, cyano, and heteroaromatic functional groups. The reaction exhibited excellent selectivity toward the ester when additional double and triple unsaturated C-C bonds were present. Lactones and poly caprolactone have been successfully cleaved to the monomeric units, showing a great promise toward polymer degradation and recycling. Detailed kinetic studies are provided in order to determine the rate dependence on the concentration of catalyst, HBpin, and ester. A plausible mechanism is proposed based on stoichiometric reactions, DFT calculations, thermodynamic measurements, and deuterium-labeling studies.

Silver-Catalyzed Hydroboration of C-X (X = C, O, N) Multiple Bonds

Pandey, Vipin K.,Tiwari, Chandra Shekhar,Rit, Arnab

supporting information, p. 1681 - 1686 (2021/03/03)

AgSbF6 was developed as an effective catalyst for the hydroboration of various unsaturated functionalities (nitriles, alkenes, and aldehydes). This atom-economic chemoselective protocol works effectively under low catalyst loading, base- A nd solvent-free moderate conditions. Importantly, this process shows excellent functional group tolerance and compatibility with structurally and electronically diverse substrates (>50 examples). Mechanistic investigations revealed that the reaction proceeds via a radical pathway. Further, the obtained N,N-diborylamines were showcased to be useful precursors for amide synthesis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1143018-85-2