Welcome to LookChem.com Sign In|Join Free

CAS

  • or

157973-60-9

Post Buying Request

157973-60-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

157973-60-9 Usage

Synthesis Reference(s)

Journal of the American Chemical Society, 114, p. 5904, 1992 DOI: 10.1021/ja00040a088Tetrahedron Letters, 26, p. 6413, 1985 DOI: 10.1016/S0040-4039(00)99014-2The Journal of Organic Chemistry, 34, p. 1817, 1969 DOI: 10.1021/jo01258a062

Check Digit Verification of cas no

The CAS Registry Mumber 157973-60-9 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,5,7,9,7 and 3 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 157973-60:
(8*1)+(7*5)+(6*7)+(5*9)+(4*7)+(3*3)+(2*6)+(1*0)=179
179 % 10 = 9
So 157973-60-9 is a valid CAS Registry Number.

157973-60-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name Cyclohexanamine

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:157973-60-9 SDS

157973-60-9Relevant articles and documents

N,N-Chelate nickel(II) complexes bearing Schiff base ligands as efficient hydrogenation catalysts for amine synthesis

Xu, Mengyin,Wang, Yang,Zhou, Yifeng,Yao, Zi-Jian

, (2021/12/09)

Five N, N-chelate nickel (II) complexes bearing N-(2-pyridinylmethylene)-benzylamine ligands with different substituent groups were synthesized in good yields. The nickel complexes exhibited prominent catalytic efficiency toward amine synthesis from nitro compounds by using NaBH4 or H2 as hydrogen source through two catalytic systems. Various amines with different substituents were obtained in moderate to excellent yields. All substrates with electron-donating and electron-withdrawing properties were tolerated in the two reduction systems. Given the efficient catalytic activity, broad substance scope, and mild reduction conditions, the nickel catalysts have potential applications in industrial production.

RhNPs supported onN-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity

Pulido-Díaz, Israel T.,Serrano-Maldonado, Alejandro,López-Suárez, Carlos César,Méndez-Ocampo, Pedro A.,Portales-Martínez, Benjamín,Gutiérrez-Alejandre, Aída,Salas-Martin, Karla P.,Guerrero-Ríos, Itzel

, p. 3289 - 3298 (2021/03/16)

Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).

MATERIALS COMPRISING CARBON-EMBEDDED COBALT NANOPARTICLES, PROCESSES FOR THEIR MANUFACTURE, AND USE AS HETEROGENEOUS CATALYSTS

-

Page/Page column 17; 19-20, (2021/03/13)

The present invention relates to catalytically active material, comprising grains of non-graphitizing carbon with cobalt nanoparticles dispersed therein, wherein dP, the average diameter of cobalt nanoparticles in the non-graphitizing carbon grains, is in the range of 1 nm to 20 nm, D, the average distance between cobalt nanoparticles in the non-graphitizing carbon grains, is in the range of 2 nm to 150 nm, and ω, the combined total mass fraction of metal in the non-graphitizing carbon grains, is in the range of 30 wt% to 70 wt% of the total mass of the non-graphitizing carbon grains, and wherein dP, D and ω conform to the following relation: 4.5 dP / ω > D ≥ 0.25 dP / ω. The present invention, further, relates to a process for the manufacture of material according to the invention, as well as its use as a catalyst.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 157973-60-9