Welcome to LookChem.com Sign In|Join Free

CAS

  • or

454-91-1

Post Buying Request

454-91-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

454-91-1 Usage

Chemical Properties

Colorless to light yellow liqui

Check Digit Verification of cas no

The CAS Registry Mumber 454-91-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,5 and 4 respectively; the second part has 2 digits, 9 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 454-91:
(5*4)+(4*5)+(3*4)+(2*9)+(1*1)=71
71 % 10 = 1
So 454-91-1 is a valid CAS Registry Number.
InChI:InChI=1/C9H9F3O/c1-6(13)7-3-2-4-8(5-7)9(10,11)12/h2-6,13H,1H3/t6-/m0/s1

454-91-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H32922)  1-[3-(Trifluoromethyl)phenyl]ethanol, 98%   

  • 454-91-1

  • 1g

  • 146.0CNY

  • Detail
  • Alfa Aesar

  • (H32922)  1-[3-(Trifluoromethyl)phenyl]ethanol, 98%   

  • 454-91-1

  • 5g

  • 430.0CNY

  • Detail
  • Alfa Aesar

  • (H32922)  1-[3-(Trifluoromethyl)phenyl]ethanol, 98%   

  • 454-91-1

  • 25g

  • 1665.0CNY

  • Detail

454-91-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-[3-(Trifluoromethyl)phenyl]ethanol

1.2 Other means of identification

Product number -
Other names 1-(3-(Trifluoromethyl)phenyl)ethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:454-91-1 SDS

454-91-1Relevant articles and documents

Nickel-Catalyzed Enantioselective Hydroboration of Vinylarenes

Tran, Hai N.,Stanley, Levi M.

supporting information, p. 395 - 399 (2021/12/27)

The enantioselective hydroboration of vinylarenes catalyzed by a chiral, nonracemic nickel catalyst is presented as a facile method for generating chiral benzylic boronate esters. Various vinylarenes react with bis(pinacolato)diboron (B2pin2) in the presence of MeOH as a hydride source to form chiral boronate esters in up to 92% yield with up to 94% ee. The use of anhydrous Me4NF to activate B2pin2 is crucial for ensuring fast transmetalation to achieve high enantioselectivities.

Mechanochemical, Water-Assisted Asymmetric Transfer Hydrogenation of Ketones Using Ruthenium Catalyst

Kolcsár, Vanessza Judit,Sz?ll?si, Gy?rgy

, (2022/01/04)

Asymmetric catalytic reactions are among the most convenient and environmentally benign methods to obtain optically pure compounds. The aim of this study was to develop a green system for the asymmetric transfer hydrogenation of ketones, applying chiral Ru catalyst in aqueous media and mechanochemical energy transmission. Using a ball mill we have optimized the milling parameters in the transfer hydrogenation of acetophenone followed by reduction of various substituted derivatives. The scope of the method was extended to carbo- and heterocyclic ketones. The scale-up of the developed system was successful, the optically enriched alcohols could be obtained in high yields. The developed mechanochemical system provides TOFs up to 168 h?1. Our present study is the first in which mechanochemically activated enantioselective transfer hydrogenations were carried out, thus, may be a useful guide for the practical synthesis of optically pure chiral secondary alcohols.

Selective C-alkylation Between Alcohols Catalyzed by N-Heterocyclic Carbene Molybdenum

Liu, Jiahao,Li, Weikang,Li, Yinwu,Liu, Yan,Ke, Zhuofeng

supporting information, p. 3124 - 3128 (2021/09/20)

The first implementation of a molybdenum complex with an easily accessible bis-N-heterocyclic carbene ligand to catalyze β-alkylation of secondary alcohols via borrowing-hydrogen (BH) strategy using alcohols as alkylating agents is reported. Remarkably high activity, excellent selectivity, and broad substrate scope compatibility with advantages of catalyst usage low to 0.5 mol%, a catalytic amount of NaOH as the base, and H2O as the by-product are demonstrated in this green and step-economical protocol. Mechanistic studies indicate a plausible outer-sphere mechanism in which the alcohol dehydrogenation is the rate-determining step.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 454-91-1