Welcome to LookChem.com Sign In|Join Free

CAS

  • or

552-82-9

Post Buying Request

552-82-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

552-82-9 Usage

Description

N-Methyldiphenylamine, an aromatic tertiary amine, is a clear yellow liquid that undergoes a photochemical reaction to transform into N-methylcarbazole (C). It is known for its applications in various industries due to its unique chemical properties.

Uses

Used in Chemical Synthesis:
N-Methyldiphenylamine is used as a starting reagent for the preparation of bis(4-carboxyphenyl)-N-methylamine (H2CPMA), which is essential in the synthesis of phosphonium ion salts. This application highlights its importance in the field of chemical synthesis and the production of specific compounds.
Used in Dye Manufacturing:
In the dye industry, N-Methyldiphenylamine is utilized in the manufacture of dyes, taking advantage of its chemical properties to create a range of colorants for various applications.
Used as a Reagent:
Similar to diphenylamine, N-Methyldiphenylamine serves as a reagent in the chemical and pharmaceutical industries. Its reactivity and stability make it a valuable component in various laboratory procedures and industrial processes.

Hazard

Toxic by ingestion.

Check Digit Verification of cas no

The CAS Registry Mumber 552-82-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,5 and 2 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 552-82:
(5*5)+(4*5)+(3*2)+(2*8)+(1*2)=69
69 % 10 = 9
So 552-82-9 is a valid CAS Registry Number.
InChI:InChI=1/C13H13N/c1-14(12-8-4-2-5-9-12)13-10-6-3-7-11-13/h2-11H,1H3/p+1

552-82-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Methyldiphenylamine

1.2 Other means of identification

Product number -
Other names N-methyl-N-phenylaniline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:552-82-9 SDS

552-82-9Relevant articles and documents

Ogata et al.

, p. 352,354, 355 (1979)

Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents

An, Ju Hyeon,Kim, Kyu Dong,Lee, Jun Hee

supporting information, p. 2876 - 2894 (2021/02/01)

Herein, we disclose a highly chemoselective room-temperature deoxygenation method applicable to various functionalized N-heterocyclic N-oxides via visible light-mediated metallaphotoredox catalysis using Hantzsch esters as the sole stoichiometric reductant. Despite the feasibility of catalyst-free conditions, most of these deoxygenations can be completed within a few minutes using only a tiny amount of a catalyst. This technology also allows for multigram-scale reactions even with an extremely low catalyst loading of 0.01 mol %. The scope of this scalable and operationally convenient protocol encompasses a wide range of functional groups, such as amides, carbamates, esters, ketones, nitrile groups, nitro groups, and halogens, which provide access to the corresponding deoxygenated N-heterocycles in good to excellent yields (an average of an 86.8% yield for a total of 45 examples).

Mesoionic N-heterocyclic olefin catalysed reductive functionalization of CO2for consecutiveN-methylation of amines

Das, Arpan,Maji, Subir,Mandal, Swadhin K.

, p. 12174 - 12180 (2021/09/28)

A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO2leading to consecutive doubleN-methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN). A wide range of secondary amines and primary amines were successfully methylated under mild conditions. The catalyst sustained over six successive cycles ofN-methylation of secondary amines without compromising its activity, which encouraged us to check its efficacy towards doubleN-methylation of primary amines. Moreover, this method was utilized for the synthesis of two commercially available drug molecules. A detailed mechanistic cycle was proposed by performing a series of control reactions along with the successful characterisation of active catalytic intermediates either by single-crystal X-ray study or by NMR spectroscopic studies in association with DFT calculations.

Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan-Lam Coupling Reactions

Walker, Benjamin R.,Manabe, Shuhei,Brusoe, Andrew T.,Sevov, Christo S.

supporting information, p. 6257 - 6265 (2021/05/07)

Simple copper salts serve as catalysts to effect C-X bond-forming reactions in some of the most utilized transformations in synthesis, including the oxidative coupling of aryl boronic acids and amines. However, these Chan-Lam coupling reactions have historically relied on chemical oxidants that limit their applicability beyond small-scale synthesis. Despite the success of replacing strong chemical oxidants with electrochemistry for a variety of metal-catalyzed processes, electrooxidative reactions with ligandless copper catalysts are plagued by slow electron-transfer kinetics, irreversible copper plating, and competitive substrate oxidation. Herein, we report the implementation of substoichiometric quantities of redox mediators to address limitations to Cu-catalyzed electrosynthesis. Mechanistic studies reveal that mediators serve multiple roles by (i) rapidly oxidizing low-valent Cu intermediates, (ii) stripping Cu metal from the cathode to regenerate the catalyst and reveal the active Pt surface for proton reduction, and (iii) providing anodic overcharge protection to prevent substrate oxidation. This strategy is applied to Chan-Lam coupling of aryl-, heteroaryl-, and alkylamines with arylboronic acids in the absence of chemical oxidants. Couplings under these electrochemical conditions occur with higher yields and shorter reaction times than conventional reactions in air and provide complementary substrate reactivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 552-82-9