Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6382-14-5

Post Buying Request

6382-14-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6382-14-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6382-14-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,3,8 and 2 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 6382-14:
(6*6)+(5*3)+(4*8)+(3*2)+(2*1)+(1*4)=95
95 % 10 = 5
So 6382-14-5 is a valid CAS Registry Number.
InChI:InChI=1/C12H18O/c1-2-3-7-10-13-11-12-8-5-4-6-9-12/h4-6,8-9H,2-3,7,10-11H2,1H3

6382-14-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name pentoxymethylbenzene

1.2 Other means of identification

Product number -
Other names EINECS 228-979-1

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6382-14-5 SDS

6382-14-5Relevant articles and documents

Utilization of o-[(E)-2-trimethylsilyl-2-iodovinyl]phenylthio derivatives as carbon radical precursors by anchimeric approach

Ooi,Furuya,Sakai,Hokke,Maruoka

, p. 541 - 543 (2001)

o-[(E)-2-Trimethylsilyl-2-iodovinyl]phenylthio derivatives have been introduced as effective precursors for the generation of carbon centered radicals even in the presence of certain nucleophiles; this provides useful information about the structural requirement for inducing an efficient anchimeric effect under mild conditions.

Photocatalytic Reductive C-O Bond Cleavage of Alkyl Aryl Ethers by Using Carbazole Catalysts with Cesium Carbonate

Yabuta, Tatsushi,Hayashi, Masahiko,Matsubara, Ryosuke

, p. 2545 - 2555 (2021/02/01)

Methods to activate the relatively stable ether C-O bonds and convert them to other functional groups are desirable. One-electron reduction of ethers is a potentially promising route to cleave the C-O bond. However, owing to the highly negative redox potential of alkyl aryl ethers (Ered -2.6 V vs SCE), this mode of ether C-O bond activation is challenging. Herein, we report the visible-light-induced photocatalytic cleavage of the alkyl aryl ether C-O bond using a carbazole-based organic photocatalyst (PC). Both benzylic and non-benzylic aryl ethers underwent C-O bond cleavage to form the corresponding phenol products. Addition of Cs2CO3 was beneficial, especially in reactions using a N-H carbazole PC. The reaction was proposed to occur via single-electron transfer (SET) from the excited-state carbazole to the substrate ether. Interaction of the N-H carbazole PC with Cs2CO3 via hydrogen bonding exists, which enables a deprotonation-assisted electron-transfer mechanism to operate. In addition, the Lewis acidic Cs cation interacts with the substrate alkyl aryl ether to activate it as an electron acceptor. The high reducing ability of the carbazole combined with the beneficial effects of Cs2CO3 made this otherwise formidable SET event possible.

Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism

Wang, Yulei,Huang, Zhidao,Leng, Xuebing,Zhu, Huping,Liu, Guixia,Huang, Zheng

supporting information, p. 4417 - 4429 (2018/04/05)

The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex (BQ-NCOP)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C-C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O- or N-containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the (BQ-NCOP)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with C2D5OD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has (BQ-NCOP)IrI(alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of (BQ-NCOP)IrIII(H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium isotope effect for the pre-equilibrium formation of (BQ-NCOP)IrIII(H)(OEt) from the catalyst resting state via ethanol dissociation. Regardless of the substrate, ethanol dehydrogenation is the slow segment of the catalytic cycle, while alkene hydrogenation occurs readily following the rate-determining step, that is, β-hydride elimination of (BQ-NCOP)Ir(H)(OEt) to form (BQ-NCOP)Ir(H)2 and acetaldehyde. The latter is effectively converted to innocent ethyl acetate under the catalytic conditions, thus avoiding the catalyst poisoning via iridium-mediated decarbonylation of acetaldehyde.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6382-14-5