Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16327-00-7

Post Buying Request

16327-00-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16327-00-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 16327-00-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,3,2 and 7 respectively; the second part has 2 digits, 0 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 16327-00:
(7*1)+(6*6)+(5*3)+(4*2)+(3*7)+(2*0)+(1*0)=87
87 % 10 = 7
So 16327-00-7 is a valid CAS Registry Number.

16327-00-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-MeO-cyclohexanol

1.2 Other means of identification

Product number -
Other names 3-methoxycyclohexan-1-ol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16327-00-7 SDS

16327-00-7Relevant articles and documents

Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis

Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal

, p. 3943 - 3957 (2021/04/12)

The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.

Elucidating the reactivity of methoxyphenol positional isomers towards hydrogen-transfer reactions by ATR-IR spectroscopy of the liquid-solid interface of RANEY Ni

De Castro, Ilton Barros Daltro,Gra?a, Inês,Rodríguez-García, Laura,Kennema, Marco,Rinaldi, Roberto,Meemken, Fabian

, p. 3107 - 3114 (2018/06/29)

In the valorisation of lignin, the application of catalytic hydrogen transfer reactions (e.g. in catalytic upstream biorefining or lignin-first biorefining) has brought a renewed interest in the fundamental understanding of hydrogen-transfer processes in the defunctionalisation of lignin-derived phenolics. In this report, we address fundamental questions underlining the distinct reactivity patterns of positional isomers of guaiacol towards H-transfer reactions in the presence of RANEY Ni and 2-PrOH (solvent and H-donor). We studied the relationship between reactivity patterns of 2-, 3- and 4-methoxyphenols and their interactions at the liquid-solid interface of RANEY Ni as probed by attenuated total reflection infrared (ATR-IR) spectroscopy. Regarding the reactivity patterns, 2-methoxyphenol or guaiacol is predominantly converted into cyclohexanol through a sequence of reactions including demethoxylation of 2-methoxyphenol to phenol followed by hydrogenation of phenol to cyclohexanol. By contrast, for the conversion of the two non-lignin related positional isomers, the corresponding 3- and 4-methoxycyclohexanols are the major reaction products. The ATR-IR spectra of the liquid-solid interface of RANEY Ni revealed that the adsorbed 2-methoxyphenol assumes a parallel orientation to the catalyst surface, which allows a strong interaction between the methoxy C-O bond and the surface. Conversely, the adsorption of 3- or 4-methoxyphenol leads to a tilted surface complex in which the methoxy C-O bond establishes no interaction with the catalyst. These observations are also corroborated by a smaller activation entropy found for the conversion of 2-methoxyphenol relative to those of the other two positional isomers.

Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles

Shi, Juanjuan,Zhao, Mengsi,Wang, Yingyu,Fu, Jie,Lu, Xiuyang,Hou, Zhaoyin

supporting information, p. 5842 - 5848 (2016/05/24)

Fast pyrolysis of biomass for bio-oil production is a direct route to renewable liquid fuels, but raw bio-oil must be upgraded in order to remove easily polymerized compounds (such as phenols and furfurals). Herein, a synthesis strategy for graphene encapsulated Ru nanoparticles (NPs) on carbon sheets (denoted as Ru@G-CS) and their excellent performance for the upgrading of raw bio-oil were reported. Ru@G-CS composites were prepared via the direct pyrolysis of mixed glucose, melamine and RuCl3 at varied temperatures (500-800 °C). Characterization indicated that very fine Ru NPs (2.5 ± 1.0 nm) that were encapsulated within 1-2 layered N-doped graphene were fabricated on N-doped carbon sheets (CS) in Ru@G-CS-700 (pyrolysis at 700 °C). And the Ru@G-CS-700 composite was highly active and stable for hydrogenation of unstable components in bio-oil (31 samples including phenols, furfurals and aromatics) even in aqueous media under mild conditions. This work provides a new protocol to the utilization of biomass, especially for the upgrading of bio-oil.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16327-00-7