Welcome to LookChem.com Sign In|Join Free

CAS

  • or

504-01-8

Post Buying Request

504-01-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

504-01-8 Usage

Chemical Properties

clear slightly yellow viscous liquid after melting

Uses

1,3-Cyclohexanediol is an important raw material and intermediate used in organic synthesis, pharmaceuticals, agrochemicals and dyestuff fields.

Check Digit Verification of cas no

The CAS Registry Mumber 504-01-8 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,0 and 4 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 504-01:
(5*5)+(4*0)+(3*4)+(2*0)+(1*1)=38
38 % 10 = 8
So 504-01-8 is a valid CAS Registry Number.
InChI:InChI=1/C6H12O2/c7-5-2-1-3-6(8)4-5/h5-8H,1-4H2/t5-,6-/m1/s1

504-01-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L04110)  1,3-Cyclohexanediol, cis + trans, 98%   

  • 504-01-8

  • 5g

  • 227.0CNY

  • Detail
  • Alfa Aesar

  • (L04110)  1,3-Cyclohexanediol, cis + trans, 98%   

  • 504-01-8

  • 25g

  • 1048.0CNY

  • Detail
  • Aldrich

  • (C101109)  1,3-Cyclohexanediol,mixtureofcisandtrans  98%

  • 504-01-8

  • C101109-10G

  • 786.24CNY

  • Detail

504-01-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,3-Cyclohexanediol

1.2 Other means of identification

Product number -
Other names Resoreitol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:504-01-8 SDS

504-01-8Relevant articles and documents

Selective hydrogenation of lignin-derived compounds under mild conditions

Chen, Lu,Van Muyden, Antoine P.,Cui, Xinjiang,Laurenczy, Gabor,Dyson, Paul J.

, p. 3069 - 3073 (2020/06/17)

A key challenge in the production of lignin-derived chemicals is to reduce the energy intensive processes used in their production. Here, we show that well-defined Rh nanoparticles dispersed in sub-micrometer size carbon hollow spheres, are able to hydrogenate lignin derived products under mild conditions (30 °C, 5 bar H2), in water. The optimum catalyst exhibits excellent selectivity and activity in the conversion of phenol to cyclohexanol and other related substrates including aryl ethers.

Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles

Shi, Juanjuan,Zhao, Mengsi,Wang, Yingyu,Fu, Jie,Lu, Xiuyang,Hou, Zhaoyin

supporting information, p. 5842 - 5848 (2016/05/24)

Fast pyrolysis of biomass for bio-oil production is a direct route to renewable liquid fuels, but raw bio-oil must be upgraded in order to remove easily polymerized compounds (such as phenols and furfurals). Herein, a synthesis strategy for graphene encapsulated Ru nanoparticles (NPs) on carbon sheets (denoted as Ru@G-CS) and their excellent performance for the upgrading of raw bio-oil were reported. Ru@G-CS composites were prepared via the direct pyrolysis of mixed glucose, melamine and RuCl3 at varied temperatures (500-800 °C). Characterization indicated that very fine Ru NPs (2.5 ± 1.0 nm) that were encapsulated within 1-2 layered N-doped graphene were fabricated on N-doped carbon sheets (CS) in Ru@G-CS-700 (pyrolysis at 700 °C). And the Ru@G-CS-700 composite was highly active and stable for hydrogenation of unstable components in bio-oil (31 samples including phenols, furfurals and aromatics) even in aqueous media under mild conditions. This work provides a new protocol to the utilization of biomass, especially for the upgrading of bio-oil.

Greener selective cycloalkane oxidations with hydrogen peroxide catalyzed by copper-5-(4-pyridyl)tetrazolate metal-organic frameworks

Martins, Luísa,Nasani, Rajendar,Saha, Manideepa,Mobin, Shaikh,Mukhopadhyay, Suman,Pombeiro, Armando

, p. 19203 - 19220 (2015/11/27)

Microwave assisted synthesis of the Cu(I) compound [Cu(μ4-4-ptz)]n [1, 4-ptz = 5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu3(μ3-4-ptz)4(μ2-N3)2(DMF)2]n·(DMF)2n (2) and [Cu(μ2-4-ptz)2(H2O)2]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H2O2) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h?1), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1-3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 504-01-8