Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4128-31-8

Post Buying Request

4128-31-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 2-Octanol CAS NO.4128-31-8 CAS NO.4128-31-8 CAS NO.4128-31-8

    Cas No: 4128-31-8

  • USD $ 7.0-8.0 / Metric Ton

  • 1 Metric Ton

  • 1000 Metric Ton/Day

  • KAISA GROUP INC
  • Contact Supplier

4128-31-8 Usage

Uses

2-Octanol is used as a chemical reagent in the synthesis of a variety of pharmaceutical compounds usually through its oxidation to a ketone or aldehyde. Used in the synthesis of piperine derivates as MAO A & B inhibitors.

Synthesis Reference(s)

The Journal of Organic Chemistry, 51, p. 4000, 1986 DOI: 10.1021/jo00371a017Tetrahedron Letters, 30, p. 4137, 1989 DOI: 10.1016/S0040-4039(00)99342-0

Check Digit Verification of cas no

The CAS Registry Mumber 4128-31-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,1,2 and 8 respectively; the second part has 2 digits, 3 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 4128-31:
(6*4)+(5*1)+(4*2)+(3*8)+(2*3)+(1*1)=68
68 % 10 = 8
So 4128-31-8 is a valid CAS Registry Number.
InChI:InChI=1/C8H18O/c1-3-4-5-6-7-8(2)9/h8-9H,3-7H2,1-2H3/t8-/m0/s1

4128-31-8Relevant articles and documents

Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex

De Vries, Johannes G.,Gandini, Tommaso,Gennari, Cesare,Jiao, Haijun,Pignataro, Luca,Stadler, Bernhard M.,Tadiello, Laura,Tin, Sergey

, p. 235 - 246 (2022/01/03)

The reductive opening of epoxides represents an attractive method for the synthesis of alcohols, but its potential application is limited by the use of stoichiometric amounts of metal hydride reducing agents (e.g., LiAlH4). For this reason, the corresponding homogeneous catalytic version with H2 is receiving increasing attention. However, investigation of this alternative has just begun, and several issues are still present, such as the use of noble metals/expensive ligands, high catalytic loading, and poor regioselectivity. Herein, we describe the use of a cheap and easy-To-handle (cyclopentadienone)iron complex (1a), previously developed by some of us, as a precatalyst for the reductive opening of epoxides with H2. While aryl epoxides smoothly reacted to afford linear alcohols, aliphatic epoxides turned out to be particularly challenging, requiring the presence of a Lewis acid cocatalyst. Remarkably, we found that it is possible to steer the regioselectivity with a careful choice of Lewis acid. A series of deuterium labeling and computational studies were run to investigate the reaction mechanism, which seems to involve more than a single pathway.

Reaction of Diisobutylaluminum Borohydride, a Binary Hydride, with Selected Organic Compounds Containing Representative Functional Groups

Amberchan, Gabriella,Snelling, Rachel A.,Moya, Enrique,Landi, Madison,Lutz, Kyle,Gatihi, Roxanne,Singaram, Bakthan

supporting information, p. 6207 - 6227 (2021/05/06)

The binary hydride, diisobutylaluminum borohydride [(iBu)2AlBH4], synthesized from diisobutylaluminum hydride (DIBAL) and borane dimethyl sulfide (BMS) has shown great potential in reducing a variety of organic functional groups. This unique binary hydride, (iBu)2AlBH4, is readily synthesized, versatile, and simple to use. Aldehydes, ketones, esters, and epoxides are reduced very fast to the corresponding alcohols in essentially quantitative yields. This binary hydride can reduce tertiary amides rapidly to the corresponding amines at 25 °C in an efficient manner. Furthermore, nitriles are converted into the corresponding amines in essentially quantitative yields. These reactions occur under ambient conditions and are completed in an hour or less. The reduction products are isolated through a simple acid-base extraction and without the use of column chromatography. Further investigation showed that (iBu)2AlBH4 has the potential to be a selective hydride donor as shown through a series of competitive reactions. Similarities and differences between (iBu)2AlBH4, DIBAL, and BMS are discussed.

Method for synthesizing secondary alcohol in water phase

-

Paragraph 0041-0042, (2021/07/14)

The invention discloses a method for synthesizing secondary alcohol in a water phase. The method comprises the following steps: taking ketone as a raw material, selecting water as a solvent, and carrying out catalytic hydrogenation reaction on the ketone in the presence of a water-soluble catalyst to obtain the secondary alcohol, wherein the catalyst is a metal iridium complex [Cp * Ir (2, 2'-bpyO)(OH)][Na]. Water is used as the solvent, so that the use of an organic solvent is avoided, and the method is more environment-friendly; the reaction is carried out at relatively low temperature and normal pressure, and the reaction conditions are mild; alkali is not needed in the reaction, so that generation of byproducts is avoided; and the conversion rate of the raw materials is high, and the yield of the obtained product is high. The method not only has academic research value, but also has a certain industrialization prospect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4128-31-8