Welcome to LookChem.com Sign In|Join Free

CAS

  • or

513-74-6

Post Buying Request

513-74-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

513-74-6 Usage

Chemical Properties

Yellow crystals. Soluble in water.

Uses

Different sources of media describe the Uses of 513-74-6 differently. You can refer to the following data:
1. Ammonium Dithiocarbamate is an intermediate in synthesizing [6R-[6α,7β(Z)]]-7-[[(2-Amino-4-thiazolyl)(methoxyimino)acetyl]amino]-3-[[[4-(2-carboxyethyl)-2-thiazolyl]thio]methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic Acid (A630540), an isomer of the antibiotic Cefodizime (C242865) which is a third generation cephalosporin with a broad spectrum of antibacterial activity.
2. Instead of H2S or (NH4)2S for pptg metals in chemical analysis; synthesis of heterocyclic compounds.

Check Digit Verification of cas no

The CAS Registry Mumber 513-74-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,1 and 3 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 513-74:
(5*5)+(4*1)+(3*3)+(2*7)+(1*4)=56
56 % 10 = 6
So 513-74-6 is a valid CAS Registry Number.
InChI:InChI=1/CH3NS2.H3N/c2-1(3)4;/h(H3,2,3,4);1H3

513-74-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name Ammonium dithiocarbamate

1.2 Other means of identification

Product number -
Other names dithiocarbamic acid ammonium salt

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:513-74-6 SDS

513-74-6Upstream product

513-74-6Relevant articles and documents

Synthesis, cytotoxic evaluation and molecular docking study of 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazoles as tubulin polymerization inhibitors

Salehi, Marjan,Amini, Mohsen,Ostad, Seyed Nasser,Riazi, Gholam Hossein,Assadieskandar, Amir,Shafiei, Bentolhoda,Shafiee, Abbas

, p. 7648 - 7654 (2013)

A series of cis-restricted 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl- thiazole analogues of combretastatin A-4 were synthesized and investigated for inhibition of cell proliferation against three cancer cell lines, HT-29, MCF-7, and AGS, and a normal mouse fibroblastic cell line, NIH-3T3, using an MTT assay. The biological study showed that 2-(methylthio) substituted compounds showed little cytotoxic activity against the four cell lines. In contrast, the presence of the 2-(benzylthio) group on the thiazole ring resulted in a significant improvement in cytotoxic activity relative to the 2-(methylthio) substituted derivatives. Furthermore, the inhibition of tubulin polymerization by some potent compounds was evaluated. All the compounds studied were moderate tubulin polymerization inhibitors. The flow cytometry analysis confirmed that the synthesized compounds led to cell cycle arrest at the G2/M phase. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model.

Synthesis, characterization, antibacterial and antioxidant potency of nsubstituted- 2-sulfanylidene-1,3-thiazolidin-4-one derivatives and QSAR study

Brahmbhatt, Harshad,Molnar, Maja,Pavi?, Valentina,Rastija, Vesna

, p. 840 - 849 (2020/01/25)

Background: Rhodanine is known for its potential and important role in the medicinal chemistry since its derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antidiabetic, antitubercular, anti-HIV, antiparasitic, antioxidant, anticancer, antiproliferative and anthelmintic agents. Objectives: Since N-substituted rhodanine synthons are rarely commercially available, it is desirable to develop a straightforward synthetic approach for the synthesis of these key building blocks. The objective was to synthesize a series of rhodanine derivatives and to investigate their antimicrobial and antioxidant activity. Also, in order to obtain an insight into their structure-activity relationship, QSAR studies on the antioxidant activity were performed. Methods: 1H and 13C FTNMR spectra were recorded on Bruker Avance 600 MHz NMR Spectrometer, mass analysis was carried out on ESI+ mode by LC-MS/MS API 2000. 2,2-Diphenyl-1- picrylhydrazyl radical scavenging activity (% DPPH) was determined in dimethylsulfoxide (DMSO) as a solvent. The antibacterial activity was assessed against Bacillus subtilis, Staphylococcus aureus (Gram positive) and Escherichia coli, Pseudomonas aeruginosa (Gram negative) bacteria in terms of the minimum inhibitory concentrations (MICs) by a modified broth microdilution method. Results: A series of N-substituted-2-sulfanylidene-1,3-thiazolidin-4-ones were synthesized and characterized by 1H NMR, 13C NMR, FTIR, GC MS, LCMS/MS and C,H,N,S elemental analysis. Most of the synthesized compounds showed moderate to excellent antibacterial activity (MIC values from 125 μg/ml to 15.62 μg/mL) and DPPH scavenging activity (from 3.60% to 94.40%). Compound 2-thioxo-3- (4-(trifluoromethyl)-phenyl)thiazolidin-4-one showed the most potent activity against Escherichia coli (3.125 μg/mL), equivalent to antibiotic Amikacin sulphate and against Staphylococcus aureus (0.097 μg/ml), 100 times superior then antibiotic Amikacin sulphate. It has also shown a potent antioxidant activity (95% DPPH scavenging). Two best QSAR models, obtained by GETAWAY descriptor R7p+, Balabans molecular connectivity topological index and Narumi harmonic topological index (HNar), suggest that the enhanced antioxidant activity is related to the presence of pairs of atoms higher polarizability at the topological distance 7, substituted benzene ring and longer saturated aliphatic chain in N-substituents. Conclusion: A series of novel N-substituted-2-thioxothiazolidin-4-one derivatives were designed, synthesized, characterized and evaluated for their antibacterial and antioxidant activity in vitro. Majority of the compounds showed excellent antibacterial activity compared to ampicillin and few of them have an excellent activity as compared to Chloramphenicol standard antibacterial drug. The QSAR study has clarified the importance of presenting a pairs of atoms higher polarizability, such as Cl and S at the specific distance, as well as the substituted benzene ring and a long saturated aliphatic chain in N-substituents for the enhanced antioxidant activity of 2-sulfanylidene-1,3- thiazolidin-4-one derivatives.

Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation

Subhedar, Dnyaneshwar D.,Shaikh, Mubarak H.,Nawale, Laxman,Yeware, Amar,Sarkar, Dhiman,Khan, Firoz A. Kalam,Sangshetti, Jaiprakash N.,Shingate, Bapurao B.

supporting information, p. 2278 - 2283 (2016/04/20)

In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and Mycobacterium bovis BCG, a small focused library of rhodanine incorporated tetrazoloquinoline has been efficiently synthesized by using [HDBU][HSO4] acidic ionic liquid. The compound 3c found to be promising inhibitor of MTB H37Ra and M. bovis BCG characterized by lower MIC values 4.5 and 2.0 μg/mL, respectively. The active compounds were further tested for cytotoxicity against HeLa, THP-1, A549 and PANC-1 cell lines using MTT assay and showed no significant cytotoxic activity at the maximum concentration evaluated. Again, the synthesized compounds were found to have potential antifungal activity. Furthermore, to rationalize the observed biological activity data, the molecular docking study also been carried out against a potential target Zmp1 enzyme of MTB H37Ra, which revealed a significant correlation between the binding score and biological activity for these compounds. The results of in vitro and in silico study suggest that these compounds possess ideal structural requirement for the further development of novel therapeutic agents.

Imidoyl dichlorides as new reagents for the rapid formation of 2-aminobenzimidazoles and related azoles

Pollock, Julie A.,Kim, Sung Hoon,Katzenellenbogen, John A.

supporting information, p. 6097 - 6099 (2015/10/28)

The development of a reagent for the efficient synthesis of five- and six-membered azoles at room temperature is proposed. A variety of substituted 2-aminobenzimidazoles are synthesized in good to excellent yields. The ability to incorporate various protecting groups makes the imidoyl dichloride reagent amenable to a large number of syntheses. The reagent is applied to the total synthesis of the 2-aminobenzimidazole containing carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), from 2-chloro-3-nitropyridine in >60% yield in 6 steps.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 513-74-6