Welcome to LookChem.com Sign In|Join Free

CAS

  • or

575-36-0

Post Buying Request

575-36-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

575-36-0 Usage

Chemical Properties

pale violet crystalline powder

Uses

Protected Naphthylamine.

Check Digit Verification of cas no

The CAS Registry Mumber 575-36-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,7 and 5 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 575-36:
(5*5)+(4*7)+(3*5)+(2*3)+(1*6)=80
80 % 10 = 0
So 575-36-0 is a valid CAS Registry Number.
InChI:InChI=1/C12H11NO/c1-9(14)13-12-8-4-6-10-5-2-3-7-11(10)12/h2-8H,1H3,(H,13,14)

575-36-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Acetyl-1-aminonaphthalene

1.2 Other means of identification

Product number -
Other names N-naphthalen-1-ylacetamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:575-36-0 SDS

575-36-0Relevant articles and documents

Design, synthesis and biological evaluation of some novel diastereoselective β-lactams bearing 2-mercaptobenzothiazole and benzoquinoline

Borazjani, Nassim,Jarrahpour, Aliasghar,Rad, Javad Ameri,Mohkam, Milad,Behzadi, Maryam,Ghasemi, Younes,Mirzaeinia, Somayyeh,Karbalaei-Heidari, Hamid Reza,Ghanbari, Mohammad Mehdi,Batta, Gyula,Turos, Edward

, p. 329 - 339 (2019)

We report the synthesis of some novel β-lactam hybrids of 2-mercaptobenzothiazole and benzoquinoline. These compounds were synthesized by a [2 + 2]-cycloaddition reaction of imines 8a-d and ketenes derived from substituted acetic acids. The reaction was totally diastereoselective leading exclusively to the formation of cis-β-lactams 10a-m. All products were obtained in good to excellent yields and their structures were established based on IR, 1H NMR, 13C NMR spectral data and elemental analysis. Schiff bases 8a-d and β-lactam hybrids 10a-m were evaluated for antimicrobial activities against six bacterial species. The minimum inhibitory concentration (MIC) values indicate that two of the β-lactams, 10k and 10m, have good activities against the two Gram-negative bacteria, E. coli and P. aeruginosa, while three of the Schiff bases, 8a-c, are active against P. aeruginosa and the Gram-positive pathogen S. aureus. The molecular and cellular basis for these observed antibacterial properties are not determined. Moreover, the five most active compounds showed acceptably low cytotoxicity (less than 25% cell growth inhibition after 72 h of incubation) against the MCF-7 cell line, and below 10% in vitro hemolytic activity at 50 and 200 μM concentrations. These results suggest a need for further inquiry into the reason for why these compounds are bioactive, and as to what their full biological activities and antibiotic potential may be. The cis stereochemistry of β-lactam 10a was confirmed by X-ray crystallographic studies.

Newman,Hung

, p. 4073 (1973)

Rosenberry,Bernhard

, p. 4308,4309 (1972)

Preparation method of acetamide compound

-

Paragraph 0035-0047, (2021/05/19)

The invention discloses a preparation method of an acetamide compound, the preparation method comprises the following steps: reacting tetracarbonyl dichloride rhodium, 1, 3-bis (diphenylphosphine) propane, tungsten carbonyl, sodium phosphate, sodium iodide, water, a nitro compound and dimethyl carbonate at 120 DEG C for 24 hours, and after the reaction is completed, performing post-treatment to obtain the acetamide compound. According to the preparation method, dimethyl carbonate serves as a C1 source and also serves as a green solvent, operation is easy, reaction starting raw materials are low in price and easy to obtain, the tolerance range of substrate functional groups is wide, and reaction efficiency is high. Various acetamide compounds can be synthesized according to actual needs, so that the practicability of the method is widened while the operation is convenient.

Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy

Zhao, Chenxi,Tang, Chu,Li, Changhao,Ning, Wentao,Hu, Zhiye,Xin, Lilan,Zhou, Hai-Bing,Huang, Jian

, (2021/05/10)

Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.

Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon-Carbon Bonds with Chlorine on Demand

Liu, Feng,Wu, Na,Cheng, Xu

supporting information, p. 3015 - 3020 (2021/05/05)

Chlorination with chlorine is straightforward, highly reactive, and versatile, but it has significant limitations. In this Letter, we introduce a protocol that could combine the efficiency of electrochemical transformation and the high reactivity of chlorine. By utilizing Cl3CCN as the chloride source, donating up to all three chloride atom, the reaction could generate and consume the chlorine in situ on demand to achieve the chlorination of aromatic compounds and electrodeficient alkenes.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 575-36-0