Welcome to LookChem.com Sign In|Join Free

CAS

  • or

625-27-4

Post Buying Request

625-27-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

625-27-4 Usage

Chemical Properties

colourless liquid

Uses

2-Methyl-2-pentene has been used in various photochemical and ozonolysis studies.

Check Digit Verification of cas no

The CAS Registry Mumber 625-27-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,2 and 5 respectively; the second part has 2 digits, 2 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 625-27:
(5*6)+(4*2)+(3*5)+(2*2)+(1*7)=64
64 % 10 = 4
So 625-27-4 is a valid CAS Registry Number.
InChI:InChI=1/C6H12/c1-4-5-6(2)3/h5H,4H2,1-3H3

625-27-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-METHYL-2-PENTENE

1.2 Other means of identification

Product number -
Other names 2-Methyl-1-penten-3-yne

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:625-27-4 SDS

625-27-4Relevant articles and documents

Nickel Hydride Complexes Supported by a Pyrrole-Derived Phosphine Ligand

Collett, Joel D.,Guan, Hairong,Krause, Jeanette A.

, p. 345 - 353 (2022/02/16)

The synthesis of two nickel hydride complexes bearing the pyrrole-derived phosphine ligand CyPNH (2-(dicyclohexylphosphino)methyl-1H-pyrrole) was developed, namely, (κP-CyPNH)(κP,κN-CyPN)NiH and the acid-stable trans-(κP-CyPNH)2Ni(OAc)H·HOAc. (κP-CyPNH)(κP,κN-CyPN)NiH stoichiometrically reduces benzaldehyde and acetophenone in a metal-ligand cooperative manner and catalytically dimerizes ethylene and cycloisomerizes 1,5-cyclooctadiene and 1,5-hexadiene. trans-(κP-CyPNH)2Ni(OAc)H·HOAc, available from the protonation of (κP-CyPNH)(κP,κN-CyPN)NiH with acetic acid, catalyzes the cycloisomerization of 1,5-cyclooctadiene more effectively and produces the less thermodynamically favored cycloisomers of 1,5-cyclooctadiene.

Palladium-catalysed alkene chain-running isomerization

Kocen, Andrew L.,Brookhart, Maurice,Daugulis, Olafs

supporting information, p. 10010 - 10013 (2017/09/12)

We report a method for palladium-catalysed chain-running isomerization of terminal and internal alkenes. Using an air-stable 2,9-dimethylphenanthroline-palladium catalyst in combination with NaBAr4 promoter, olefins are converted to the most stable double bond isomer at -30 to 20 °C. Silyl enol ethers are readily formed from silylated allylic alcohols. Fluorinated substituents are compatible with the reaction conditions, allowing the synthesis of fluoroenolates. Catalyst loading as low as 0.05% can be employed on a gram scale.

One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: Insights into the major reaction pathways

Xing, Shiyou,Lv, Pengmei,Wang, Jiayan,Fu, Junying,Fan, Pei,Yang, Lingmei,Yang, Gaixiu,Yuan, Zhenhong,Chen, Yong

, p. 2961 - 2973 (2017/02/05)

For high caloricity and stability in bio-aviation fuels, a certain content of aromatic hydrocarbons (AHCs, 8-25 wt%) is crucial. Fatty acids, obtained from waste or inedible oils, are a renewable and economic feedstock for AHC production. Considerable amounts of AHCs, up to 64.61 wt%, were produced through the one-step hydroprocessing of fatty acids over Ni/HZSM-5 catalysts. Hydrogenation, hydrocracking, and aromatization constituted the principal AHC formation processes. At a lower temperature, fatty acids were first hydrosaturated and then hydrodeoxygenated at metal sites to form long-chain hydrocarbons. Alternatively, the unsaturated fatty acids could be directly deoxygenated at acid sites without first being saturated. The long-chain hydrocarbons were cracked into gases such as ethane, propane, and C6-C8 olefins over the catalysts' Br?nsted acid sites; these underwent Diels-Alder reactions on the catalysts' Lewis acid sites to form AHCs. C6-C8 olefins were determined as critical intermediates for AHC formation. As the Ni content in the catalyst increased, the Br?nsted-acid site density was reduced due to coverage by the metal nanoparticles. Good performance was achieved with a loading of 10 wt% Ni, where the Ni nanoparticles exhibited a polyhedral morphology which exposed more active sites for aromatization.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 625-27-4