Welcome to LookChem.com Sign In|Join Free

CAS

  • or

64847-76-3

Post Buying Request

64847-76-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

64847-76-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 64847-76-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,4,8,4 and 7 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 64847-76:
(7*6)+(6*4)+(5*8)+(4*4)+(3*7)+(2*7)+(1*6)=163
163 % 10 = 3
So 64847-76-3 is a valid CAS Registry Number.

64847-76-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-CYANOBENZALDEHYDE OXIME

1.2 Other means of identification

Product number -
Other names Benzonitrile,3-formyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:64847-76-3 SDS

64847-76-3Relevant articles and documents

Dibenzazepine-linked isoxazoles: New and potent class of α-glucosidase inhibitors

Umm-E-Farwa,Ullah, Saeed,Khan, Maria Aqeel,Zafar, Humaira,Atia-tul-Wahab,Younus, Munisaa,Choudhary, M. Iqbal,Basha, Fatima Z.

supporting information, (2021/05/10)

α-Glucosidase inhibition is a valid approach for controlling hyperglycemia in diabetes. In the current study, new molecules as a hybrid of isoxazole and dibenzazepine scaffolds were designed, based on their literature as antidiabetic agents. For this, a series of dibenzazepine-linked isoxazoles (33–54) was prepared using Nitrile oxide-Alkyne cycloaddition (NOAC) reaction, and evaluated for their α-glucosidase inhibitory activities to explore new hits for treatment of diabetes. Most of the compounds showed potent inhibitory potency against α-glucosidase (EC 3.2.1.20) enzyme (IC50 = 35.62 ± 1.48 to 333.30 ± 1.67 μM) using acarbose as a reference drug (IC50 = 875.75 ± 2.08 μM). Structure-activity relationship, kinetics and molecular docking studies of active isoxazoles were also determined to study enzyme-inhibitor interactions. Compounds 33, 40, 41, 46, 48–50, and 54 showed binding interactions with critical amino acid residues of α-glucosidase enzyme, such as Lys156, Ser157, Asp242, and Gln353.

Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) Hubs

Barrow, Andrew S.,Cheng, Yunfei,Gialelis, Timothy L.,Giel, Marie-Claire,Kitamura, Seiya,Li, Gencheng,Moses, John E.,Ottonello, Alessandra,Sharpless, K. Barry,Smedley, Christopher J.,Wolan, Dennis W.

supporting information, p. 12460 - 12469 (2020/06/10)

Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving “diversity with ease”, by combining classic C?C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels–Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates—demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.

Cascade Process for Direct Transformation of Aldehydes (RCHO) to Nitriles (RCN) Using Inorganic Reagents NH2OH/Na2CO3/SO2F2 in DMSO

Fang, Wan-Yin,Qin, Hua-Li

, p. 5803 - 5812 (2019/05/14)

A simple, mild, and practical process for direct conversion of aldehydes to nitriles was developed feathering a wide substrate scope and great functional group tolerability (52 examples, over 90% yield in most cases) using inorganic reagents (NH2OH/Na2CO3/SO2F2) in DMSO. This method allows for transformations of readily available, inexpensive, and abundant aldehydes to highly valuable nitriles in a pot, atom, and step-economical manner without transition metals. This protocol will serve as a robust tool for the installation of cyano-moieties to complicated molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 64847-76-3