Welcome to LookChem.com Sign In|Join Free

CAS

  • or

79322-76-2

Post Buying Request

79322-76-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

79322-76-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 79322-76-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,9,3,2 and 2 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 79322-76:
(7*7)+(6*9)+(5*3)+(4*2)+(3*2)+(2*7)+(1*6)=152
152 % 10 = 2
So 79322-76-2 is a valid CAS Registry Number.
InChI:InChI=1/C10H12O3/c1-7(11)8-3-5-9(6-4-8)10(12)13-2/h3-7,11H,1-2H3/t7-/m1/s1

79322-76-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name Methyl 4-(1-hydroxyethyl)benzoate

1.2 Other means of identification

Product number -
Other names METHYL 4-(1-HYDROXYETHYL)BENZOATE, TECH., 90

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:79322-76-2 SDS

79322-76-2Relevant articles and documents

Novel non-metal catalyst for catalyzing asymmetric hydrogenation of ketone and alpha, beta-unsaturated ketone

-

Paragraph 0168-0173, (2021/04/26)

The invention discloses a novel non-metal catalyst for catalyzing asymmetric hydrogenation of ketone and alpha, beta-unsaturated ketone. The preparation method of a chiral alcohol compound shown as formula IV comprises the following step of: reacting a ketone compound shown as formula V with hydrogen under the catalysis of tri(4-hydrotetrafluorophenyl)boron and a chiral oxazoline compound to obtain the chiral alcohol compound shown as the formula IV; the preparation method of a chiral tetralone compound shown as formula VI comprises the following step of: under the catalysis of tri(4-hydrotetrafluorophenyl)boron and a chiral oxazoline compound, reacting an alpha, beta-unsaturated ketone compound shown as formula VII with hydrogen to obtain the chiral tetralone compound shown as the formula VI. The method has the advantages of easy synthesis of raw materials, mild reaction conditions, simple operation, high stereoselectivity and the like, the ee value of the product is up to 92%, and the yield is up to 99%.

Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones

Titze, Marvin,Heitk?mper, Juliane,Junge, Thorsten,K?stner, Johannes,Peters, René

supporting information, p. 5544 - 5553 (2021/02/05)

Enantiopure secondary alcohols are fundamental high-value synthetic building blocks. One of the most attractive ways to get access to this compound class is the catalytic hydroboration. We describe a new concept for this reaction type that allowed for exceptional catalytic turnover numbers (up to 15 400), which were increased by around 1.5–3 orders of magnitude compared to the most active catalysts previously reported. In our concept an aprotic ammonium halide moiety cooperates with an oxophilic Lewis acid within the same catalyst molecule. Control experiments reveal that both catalytic centers are essential for the observed activity. Kinetic, spectroscopic and computational studies show that the hydride transfer is rate limiting and proceeds via a concerted mechanism, in which hydride at Boron is continuously displaced by iodide, reminiscent to an SN2 reaction. The catalyst, which is accessible in high yields in few steps, was found to be stable during catalysis, readily recyclable and could be reused 10 times still efficiently working.

Enantioselective Hydroboration of Ketones Catalyzed by Rare-Earth Metal Complexes Containing Trost Ligands

Lu, Chengrong,Sun, Yuli,Xue, Mingqiang,Zhao, Bei

, p. 10504 - 10513 (2020/09/23)

Four chiral dinuclear rare-earth metal complexes [REL1]2 (RE = Y(1), Eu(2), Nd(3), La (4)) stabilized by Trost proligand H3L1 (H3L1 = (S,S)-2,6-bis[2-(hydroxydiphenylmethyl)pyrrolidin-1-ylmethyl]-4-methylphenol) were first prepared, and all were characterized by X-ray diffraction. Complex 4 was employed as the catalyst for enantioselective hydroboration reaction of substituted ketones, and the corresponding secondary alcohols with excellent yields and high ee values were obtained using reductant HBpin. The same result was also achieved using the combination of lanthanium amides La[N(SiMe3)2]3 with Trost proligand H3L1 in a 1:1 molar ratio. The experimental findings and DFT calculation revealed the possible mechanism of the enantioselective hydroboration reaction and defined the origin of the enantioselectivity in the current system.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 79322-76-2