Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5391-88-8

Post Buying Request

5391-88-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5391-88-8 Usage

Chemical Properties

white to light brown crystalline powder

Uses

4-Bromo-α-methylbenzyl alcohol was used in the synthesis of 3-(4-(1-(tert-butyl)dimethylsilyloxy)ethyl)phenyl)-3-(trifluoromethyl)-3H-diazirine and (1-(4-bromophenyl)ethoxy)(tert-butyl)dimethylsilane.

Check Digit Verification of cas no

The CAS Registry Mumber 5391-88-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,3,9 and 1 respectively; the second part has 2 digits, 8 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 5391-88:
(6*5)+(5*3)+(4*9)+(3*1)+(2*8)+(1*8)=108
108 % 10 = 8
So 5391-88-8 is a valid CAS Registry Number.
InChI:InChI=1/C8H9BrO/c1-6(10)7-2-4-8(9)5-3-7/h2-6,10H,1H3/t6-/m1/s1

5391-88-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B23561)  1-(4-Bromophenyl)ethanol, 95%   

  • 5391-88-8

  • 5g

  • 186.0CNY

  • Detail
  • Alfa Aesar

  • (B23561)  1-(4-Bromophenyl)ethanol, 95%   

  • 5391-88-8

  • 25g

  • 462.0CNY

  • Detail
  • Alfa Aesar

  • (B23561)  1-(4-Bromophenyl)ethanol, 95%   

  • 5391-88-8

  • 100g

  • 1523.0CNY

  • Detail

5391-88-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-Bromophenyl)ethanol

1.2 Other means of identification

Product number -
Other names 4-Bromo--methylbenzyl alcohol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5391-88-8 SDS

5391-88-8Relevant articles and documents

Hydrosilylation of Aldehydes and Ketones Catalyzed by a 2-Iminopyrrolyl Alkyl-Manganese(II) Complex

Cruz, Tiago F. C.,Veiros, Luís F.,Gomes, Pedro T.

supporting information, p. 1195 - 1206 (2022/01/11)

A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(μ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N′-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.

Chitosan as a chiral ligand and organocatalyst: Preparation conditions-property-catalytic performance relationships

Kolcsár, Vanessza Judit,Sz?ll?si, Gy?rgy

, p. 7652 - 7666 (2021/12/13)

Chitosan is an abundant and renewable chirality source of natural origin. The effect of the preparation conditions by alkaline hydrolysis of chitin on the properties of chitosan was studied. The materials obtained were used as ligands in the ruthenium-catalysed asymmetric transfer hydrogenation of aromatic prochiral ketones and oxidative kinetic resolution of benzylic alcohols as well as organocatalysts in the Michael addition of isobutyraldehyde to N-substituted maleimides. The degrees of deacetylation of the prepared materials were determined by 1H NMR, FT-IR and UV-vis spectroscopy, the molecular weights by viscosity measurements, their crystallinity by WAXRD, and their morphology by SEM and TEM investigations. The materials were also characterized by Raman spectroscopy. The biopolymers which have molecular weights in a narrow (200-230 kDa) range and appropriate (80-95%) degrees of deacetylation were the most efficient ligands in the enantioselective transfer hydrogenation, whereas in the oxidative kinetic resolution the activity of the complexes and the stereoselectivity increased with the degree of deacetylation. The chirality of the chitosan was sufficient to obtain enantioselection in the Michael addition of isobutyraldehyde to maleimides in the aqueous phase. Interestingly, the biopolymer afforded the opposite enantiomer in excess compared to the monomer, d-glucosamine. In this reaction, good correlation between the degree of deacetylation and the catalytic activity was found. These results are novel steps in the application of this natural, biocompatible and biodegradable polymer in developing environmentally benign methods for the production of optically pure fine chemicals.

Copper-catalyzed asymmetric reductions of aryl/heteroaryl ketones under mild aqueous micellar conditions

Etemadi-Davan, Elham,Fialho, David M.,Gadakh, Amol,Langner, Olivia C.,Lipshutz, Bruce H.,Sambasivam, Ganesh,Takale, Balaram S.

supporting information, p. 3282 - 3286 (2021/05/29)

Enantioselective syntheses of nonracemic secondary alcohols have been achieved in an aqueous micellar medium via copper-catalyzed (Cu(OAc)2·H2O/(R)-3,4,5-MeO-MeO-BIPHEP) reduction of aryl/heteroaryl ketones. This methodology serves as a green protocol to access enantio-enriched alcohols under mild conditions (0-22 °C) using a base metal catalyst, together with an inexpensive, innocuous, and convenient stoichiometric hydride source (PMHS). The secondary alcohol products are formed in good to excellent yields with ee values greater than 90%.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5391-88-8