Welcome to LookChem.com Sign In|Join Free

CAS

  • or

945-93-7

Post Buying Request

945-93-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

945-93-7 Usage

General Description

Ethyl trans-beta-methylcinnamate is a chemical compound commonly used in the production of perfumes and cosmetics due to its sweet, fruity, and balsamic odor. It is also used as a food additive to impart a tropical fruit flavor and as a fragrance ingredient in various household products. In addition, it has been studied for its potential anti-inflammatory and antioxidant properties, making it a potential candidate for use in pharmaceutical and skincare products. However,

Check Digit Verification of cas no

The CAS Registry Mumber 945-93-7 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 9,4 and 5 respectively; the second part has 2 digits, 9 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 945-93:
(5*9)+(4*4)+(3*5)+(2*9)+(1*3)=97
97 % 10 = 7
So 945-93-7 is a valid CAS Registry Number.

945-93-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name ETHYL TRANS-β-METHYLCINNAMATE

1.2 Other means of identification

Product number -
Other names Ethyl 3-phenylcrotonate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:945-93-7 SDS

945-93-7Relevant articles and documents

An Intramolecular Iodine-Catalyzed C(sp3)?H Oxidation as a Versatile Tool for the Synthesis of Tetrahydrofurans

Br?se, Stefan,Koch, Vanessa

supporting information, p. 3478 - 3483 (2021/07/22)

The formation of ubiquitous occurring tetrahydrofuran patterns has been extensively investigated in the 1960s as it was one of the first examples of a non-directed remote C?H activation. These approaches suffer from the use of toxic transition metals in overstoichiometric amounts. An attractive metal-free solution for transforming carbon-hydrogen bonds into carbon-oxygen bonds lies in applying economically and ecologically favorable iodine reagents. The presented method involves an intertwined catalytic cycle of a radical chain reaction and an iodine(I/III) redox couple by selectively activating a remote C(sp3)?H bond under visible-light irradiation. The reaction proceeds under mild reaction conditions, is operationally simple and tolerates many functional groups giving fast and easy access to different substituted tetrahydrofurans.

Palladium-Catalyzed Allyl-Allyl Reductive Coupling of Allylamines or Allylic Alcohols with H2as Sole Reductant

Zhou, Xibing,Zhang, Guoying,Huang, Renbin,Huang, Hanmin

supporting information, p. 365 - 369 (2021/01/26)

Catalytic carbon-carbon bond formation building on reductive coupling is a powerful method for the preparation of organic compounds. The identification of environmentally benign reductants is key for establishing an efficient reductive coupling reaction. Herein an efficient strategy enabling H2 as the sole reductant for the palladium-catalyzed allyl-allyl reductive coupling reaction is described. A wide range of allylamines and allylic alcohols as well as allylic ethers proceed smoothly to deliver the C-C coupling products under 1 atm of H2. Kinetic studies suggested that the dinuclear palladium species was involved in the catalytic cycle.

Highly Enantioselective Iridium-Catalyzed Hydrogenation of Conjugated Trisubstituted Enones

Peters, Bram B. C.,Jongcharoenkamol, Jira,Krajangsri, Suppachai,Andersson, Pher G.

supporting information, p. 242 - 246 (2021/01/13)

Asymmetric hydrogenation of conjugated enones is one of the most efficient and straightforward methods to prepare optically active ketones. In this study, chiral bidentate Ir-N,P complexes were utilized to access these scaffolds for ketones bearing the stereogenic center at both the α- and β-positions. Excellent enantiomeric excesses, of up to 99%, were obtained, accompanied with good to high isolated yields. Challenging dialkyl substituted substrates, which are difficult to hydrogenate with satisfactory chiral induction, were hydrogenated in a highly enantioselective fashion.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 945-93-7