Min.Order / FOB Price:Get Latest Price
10 Gram |
Negotiable |
99% Methyl Cellulose Methyl Cellulose Manufacturer For Thickener
Advantages:
Hubei XinRunde Chemical Co., Ltd is a renowned pharmaceutical manufacturer. We can offer high quality products at competitive price in quick delivery with 100% custom pass guaranteed. Never stop striving to offer our best service is our philosophy. We have Flexible and Untraceable payment terms. As a leading manufacture, our products have been exported to Germany, Norway, Poland, Finland, Spain, UK, France, Russia, USA, Brazil, Mexico, Australia, Japan, Korea, Thailand, Indonesia, Uruguay and many other countries.
1. Quality.Every batch of steroid powders have tobetested by our QC(quality control) before they are allowed to sell.
2. Delivery We have stock, so we can delivery quickly at the very day when receive the payment. Within 24 hours after receiving the payment Lead time 4 or 7 days.
3. Discreet package Safelyand Professionally Disguised Package Guaranteed. For your safety and to insure delivery all products will be packed in a discreet way to prevent any suspicions, no steroids related name will appear on the parcels. high successful delivery rate.
4. Warm after-sale service Any of your question would be solved for the first as soon as possible.
Methyl cellulose Basic information |
Product Name: | Methyl cellulose |
Synonyms: | MODIFIED CELLULOSE;MODIFIED CELLULOSE, MC;'TYLOSE'(R) MH 300;'TYLOSE'(R) MH 1000;adulsin;Methyl cellulose, viscosity 8000 cPs;Methyl cellulose, viscosity 4000 cPs;Methyl cellulose M20 |
CAS: | 9004-67-5 |
MF: | N/A |
MW: | 0 |
EINECS: | 232-674-9 |
Product Categories: | Biochemicals and Reagents;Cellulose;Core Bioreagents;Materials Science;Natural Polymers;Polymer Science;Polymers;Research Essentials;Carbohydrates M-OPharmacopoeia (USP);Pharmacopoeia A-ZBiochemicals and Reagents;Carbohydrates;Carbohydrates A to;CarbohydratesCarbohydrates;Core Bioreagents;Polysaccharide;Research Essentials;Carbohydrates M-OBiochemicals and Reagents;CarbohydratesPolymer Science;CelluloseBiochemicals and Reagents;Natural Polymers;Cell Culture;Miscellaneous Reagents and Supplements;Reagents and Supplements;CarbohydratesProtein Electrophoresis;Capillary Electrophoresis;Dynamic Sieving |
Mol File: | Mol File |
Methyl cellulose Chemical Properties |
FEMA | 2696 | METHYL CELLULOSE |
form | powder |
color | White, yellow-white or grayish-white |
Water Solubility | SOLUBLE IN COLD WATER |
Merck | 14,6040 |
Stability: | Stable. Incompatible with strong oxidizing agents, bleach, perchloric acid, nitric acid, perchlorates, alkali nitrates, alkali nitrites, calcium oxide. |
EPA Substance Registry System | Cellulose, methyl ether(9004-67-5) |
Safety Information |
Safety Statements | 24/25 |
WGK Germany | 3 |
RTECS | FJ5959000 |
F | 3 |
TSCA | Yes |
Hazardous Substances Data | 9004-67-5(Hazardous Substances Data) |
Methyl cellulose Usage And Synthesis |
Outline | Methylcellulose ether, abbreviated MC, is a kind of long-chain substituted cellulose, in which 27% to 32% of the hydroxyl group exists in the form of methoxy. The substitution degree affects the physical properties of methyl cellulose such as solubility. Methylcellulose has an average molecular weight of 10,000 to 220,000. At room temperature, it exhibits as a white powder or fibrous material, and is non-toxic, non-irritating with non-allergic effect. Its apparent relative density is 0.35 to 0.55 (with the real density being 1.26 to 1.30). It swells in water into a translucent viscous colloidal solution which is neutral to litmus, insoluble in ethanol, ether and chloroform, but soluble in glacial acetic acid. It is tolerant to the effects of acid, alkali, microorganisms, heat, and light and is also not affected by oil and grease, but will burn upon reaching ignition point. Methyl cellulose is a product composed of cellulose glucose with all or part of three hydroxyls getting methylated. General products contain a methoxy fraction of 26% to 33% with degree of substitution being 1.7 to 2.2. Product with substitution degree being 1.3 to 2.6 is soluble in water, pyridine, and acetic acid. This product is widely used for architecture, such as being used as the adhesive of cement, mortar, and for mudding off the seam. It is also used for making film an adhesive in cosmetics, medicine, and food industry. It can be also used as a textile sizing agents, synthetic resin dispersing agent, paint film formers and thickeners. The production method is that: use pulp to produce the alkali cellulose; alkali cellulose is reacted with methyl chloride or dimethyl sulfate in an autoclave and then further refined with warm water to obtain the final product. |
Herbs and Applications |
Methyl cellulose is widely applied in a variety of orally administrated or topical formulations; it is also widely used in cosmetics and food. After oral administration, methyl cellulose can’t be digested or absorbed so that it is a calorie-free material. Excessive intake of methyl cellulose may temporarily increase flatulence and even cause esophageal obstruction upon insufficient water intake. However, methyl cellulose has a laxative effect. Methyl cellulose is a hydrophilic colloid and is the high-viscosity cellulose derivatives. It is non-toxic and caustic, hygroscopic and can expand into a colloidal suspension in cold water. It is also insoluble in hot water, alcohol, ether, chloroform and saturated salt solution but is soluble in glacial acetic acid and the mixture of equal amount of alcohol and chloroform solution. Its solution may be agglomerated by salts, polybasic acid, phenol and tannin with adding ethanol being able to prevent this agglomeration effect. Methyl cellulose can’t be digested, absorbed in the intestine. It can absorb moisture, mixed with water to form a large volume of hydrophilic gum, and increase the stool volume and soften it, and also stimulate the gut peristalsis to promote the defecation. In patients with diarrhea, because the product can absorb moisture, so it reduces the intestine liquidity to take the antidiarrheal effect. Oral administration: 1~4g/d together with taking large amounts of water as a bulk laxative for the treatment of constipation. The product has been worked as anorectic agents for controlling appetite and inducing weight loss. But it doesn’t have a reliable effect. Methyl cellulose can also be used as: adhesives which are suitable for choosing low or moderate viscosity grade plastic with both adding powder and solution working well. It is used for improving drug dissolution rate or disintegration rate; the general concentration is 1% to 2%. For gels, thickening gels and creams: it is appropriate to choose high-viscosity grade. Suspending agents and thickening agents, solutions can replace syrup; for thickening, use a concentration of up to 5%. For Tablet coating: we can choose the high-level replacement & low viscosity product as film coating; it can also be used for coating for surrounding the outer nuclear layer for isolation. For disintegrating agents, it is commonly used at a concentration of 2% to 10%. For emulsifier, it is generally recommended to use low-viscosity grade at a concentration of 1% to 5%. For eye drops, we should use high-viscosity grade. |
Stability and storage conditions |
Methyl cellulose powder is stable and slightly hygroscopic; it should be placed in an airtight container and stored in a cool dry place. Methyl cellulose solution is sable in diluted acid or base with pH 3 to 11 at room temperature, and is easy to be destroyed by microbes to be corrupted. Therefore, the solution should be added into preservatives or subject to autoclaving. After autoclaving, the change of the solution viscosity is related with pH value. For solution of pH <4, the viscosity will decrease by more than 20% after autoclaving. |
Incompatibility |
Methylcellulose is incompatible for combination with ammonia acridine hydrochloride, chlorine cresol, mercury chloride, phenol, resorcinol, 4-aminobenzoic acid. Inorganic acid, phenol, and tannic acid cause the agglomeration of methyl cellulose; and can also forms complex with tetracaine; it can also bind with parabens so we should increase the amount of parabens upon application. The above information is edited by the chemicalbook of Dai Xiongfeng. |
Content Analysis | Measure the methoxy content according to the GT-14 method. |
Toxicity |
ADI does not make special provision (FAO/WHO, 2001). GRAS (FDA, §182.1480, 2000). |
Limited application |
FAO /WHO (1984) Citrus canned; 10Mg/kg (as an anti-haze agent); cold drinks 10g/kg. According to Japanese regulations (1990), the maximum amount is 2% (used alone or the combination amount together with calcium carboxymethyl cellulose, sodium carboxymethyl cellulose, sodium carboxymethyl starch, sodium starch phosphate). It can also be used as the emulsion stabilizer of ice cream with the amount being 0.05%; salad sauces being 0.75%; for bread corruption prevention and surface homogenization, use 0.2% to 0.3%. For application in citrus canned to prevent precipitation of hesperidins and the anti-clounding agent in the juice, use 10~30mg/kg. |
Chemical Properties |
It is a kind of methyl ether of cellulose. It is white or pale yellow or light gray small particles (95% through a 40 mesh sieve), filaments like or powder. It is odorless, tasteless and has hygroscopicity with an apparent density of 0.3~0.7g/mL. When all the R in the structure is methyl, the substitution degree is equal to 3, and the methoxy content is 45.57%. For methylcellulose used as the food additive, the methoxy content should be around 26%~33% which corresponds to a degree of substitution of 1.7 to 2.2. When the substitution degree is lower than 1.3, it can be dissolved in alkaline. While methylcellulose with substitution degree higher than 2.6 is soluble in an organic solvent. When the degree of substitution is less than 1.3, it can be dissolved in alkali; for those with substitution degree higher than 2.6, it is soluble in organic solution. At the range between 1.3 and 2.6, it is soluble in cold water, pyridine, aniline, trimethyl formamide, benzyl alcohol and acetic acid. Aqueous solution is stable at neutral and room temperature; but it can generate gelation effect and be precipitated at high temperature. Gelation temperature is dependent on the absolute viscosity and concentration of the solution; solution of large viscosity and high concentration has a relative low gelling temperature. In the presence of inorganic salts, viscosity can be increased. Due to that it belongs to a non-ionic solution, the polyvalent metal is not able to precipitate it; Gelation will only occur when the concentration of the electrolyte and other dissolved substances exceeds a certain limit. Aqueous solution has surfactant activity and dried to form a thin film; upon heating and cooling, it will orderly go through the reversible transition from the sol to gel. |
Uses |
It can be used as thickeners; stabilizer; emulsifier; excipients; dispersant; binders; substitutes of film-forming agent hydrosol. It can also be used in mayonnaise, shortenings and some other foods. Because of that the materials can’t digested in the body, it can maintain several times amount of water, resulting in satiety; it can be used in crackers, waffles and other food for taking effect. For application, first 1/5 of the required amount of water for moistening the powder, together with cold water (necessary, to add ice) for mixing well. EEC: approved for using at frozen foam products, potato chips, soft drinks, special dietary foods, baked goods filling, the top material for foaming, sauces, and sauces. It can also be used in mayonnaise, shortenings and some other foods. Because of that the materials can’t digested in the body, it can maintain several times amount of water, resulting in satiety; it can be used in crackers, waffles and other food for taking effect. For application, first 1/5 of the required amount of water for moistening the powder, together with cold water (necessary, to add ice) for mixing well. EEC: approved for using at frozen foam products, potato chips, soft drinks, special dietary foods, baked goods filling, the top material for foaming, sauces, and sauces. The product is widely used in the architecture industry such as the mixture agent for cement, plaster, and clay seams. It can also be used as adhesive film-forming agent in cosmetics, medicine, and food industry; also can be used as sizing agents for spinning, and printing and dyeing, synthetic resin dispersing agent, paint film formers and thickeners. Methyl cellulose is a very stable material which is resistant to acid, alkalis, microorganisms, and heating. It can be excrete out from the human body without any change. It is used for synthetic resin dispersing agent, film-forming agent of painting, thickener, binder materials, textile sizing agent, and the film-forming agent in the pharmaceutical and food industries. |
Production methods |
1. Use Pulp to prepare the base fiber; then have etherification reaction to obtain methyl chloride. According to different sources, pulp can be classified into cotton pulp, wood pulp, straw pulp, etc., It is commonly used in industrial of wood pulp and cotton pulp (cotton linters). The cellulose in the pulp itself is difficult to have reaction with methyl chloride; it must first be made into alkali cellulose. Use 1 part of cellulose to be combined with 0.9-1.2 parts of sodium hydroxide and 0.9 to 1.2 parts (all by weight) of water for soak at 30 °C for 1-2h. Then compress to remove excess alkali to obtain the bulk-like alkali cellulose. Break it into pieces to loosen the alkali cellulose and make it more uniform; with the reaction with the oxygen in the air, alkaline cellulose is degraded and its polymerization is also reduced to achieve the purpose of regulating the viscosity. The alkali cellulose which has undergone the above aging process is further suspended in an excess of methyl chloride (typically 10-15 times of the weight of pulp) for taking reaction for about 5h at 60-70 °C to complete the etherification reaction with the corresponding pressure of about 1.7MPa . Post-processing of the products includes washing and drying of the finished product. Is generally washed in hot water of 80-90 °C; add an appropriate amount of hydrochloric acid (or sulfuric acid) for neutralization, and further add it into oxalic acid to make it form complex with iron and heavy metal which is removed together with sodium chloride during the washing step by water. The product was washed and dehydrated, dried to obtain methyl cellulose products. 2. Use alkali to treat wood pulp or cotton, further use methyl chloride to methylate the alkali to obtain the final product. Some industrial products contain small amounts (up to 5%) hydroxyethyl and/or cellulose displaced by hydroxypropyl. For these products, the calculation of content index should follow the percentage of methoxy group plus percentage of ethoxy group and/or percentage of propoxy with "total alkoxy" representing the content. |
Chemical Properties | white powder or (often) 2% solution in water, properties |
Uses | Thickener for aqueous and non-aqueous systems, clear films with grease resistance, binders, lubricants, steric stabilizer and water retention aid. |
Uses | As a substitute for water-soluble gums; to render paper greaseproof, in adhesives, as thickening agent in cosmetics, as protective colloid in emulsions, as binder and stabilizer in foods. As fat replacer in the formulation of dietetic foods. Pharmaceutic aid (suspending agent). |
General Description | Odorless white or creamy white fibrous powder. Tasteless. |
Air & Water Reactions | Methyl cellulose is hygroscopic. Swells in water to a viscous, colloidal solid. Slightly water soluble. |
CAS NO:9004-65-3
CAS NO:42206-94-0
CAS NO:131807-57-3
CAS NO:25655-41-8
CAS NO:25655-41-8
CAS NO:9004-62-0
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View