China Largest Manuf...

China Largest Manufacturer factory Supply lycopene CAS 502-65-8

China Largest Manufacturer factory Supply lycopene CAS 502-65-8

Min.Order / FOB Price:Get Latest Price

500 Kilogram

FOB Price:USD 1.0000 -2.0000

  • Min.Order :500 Kilogram
  • Purity: 99%
  • Payment Terms : L/C,D/A,D/P,T/T,Other

Keywords

lycopene lycopene 502-65-8

Quick Details

  • Appearance:white powder
  • Application:Pharm chemicals industry
  • PackAge:25KG/Drum
  • ProductionCapacity:20|Metric Ton|Month
  • Storage:2-8°C
  • Transportation:By air /Sea/ coruier

Superiority:

                                PRODUCT DETAILS       

Lycopene Basic information
Product Name: Lycopene
Synonyms: 4,4-CAROTENE;LYCOSOURCE;LYCOPENE;JARCOPENE(TM);2,6,10,14,19,23,27,31-OCTAMETHYL-DOTRIACONTA-2,6,8,10,12,14,16,18,20,22,24,26,30-TRIDECAENE;PSI,PSI-CAROTENE;Y,Y-CAROTENE;E 160d
CAS: 502-65-8
MF: C40H56
MW: 536.87
EINECS: 207-949-1
Product Categories: Aliphatics;Nutritional Ingredients;All Aliphatics;Natural Plant Extract;Intermediates & Fine Chemicals;Pharmaceuticals;Carotenoids;chemical reagent;pharmaceutical intermediate;phytochemical;reference standards from Chinese medicinal herbs (TCM).;standardized herbal extract;Inhibitors;BENUTRI;Plant extract;from Blakeslea Trispora;Plant extracts
Mol File: 502-65-8.mol
Lycopene Structure
 
Lycopene Chemical Properties
Melting point  172-173°C
Boiling point  644.94°C (rough estimate)
density  0.9380 (estimate)
refractive index  1.5630 (estimate)
FEMA  4110 | TOMATO LYCOPENE
storage temp.  -70°C
solubility  Benzene (Slightly), Chloroform (Sparingly), Ethyl Acetate (Very Slightly), Metha
form  powder
color  Red to Very Dark Red
Stability: Heat sensitive - store at -70 C. Combustible. Incompatible with strong oxidizing agents.
InChIKey OAIJSZIZWZSQBC-BOJOQWLHSA-N
CAS DataBase Reference 502-65-8(CAS DataBase Reference)
 
Safety Information
Hazard Codes  Xi
Risk Statements  36/37/38
Safety Statements  26-36/37/39
WGK Germany  3
8-10-23
HS Code  32030019
MSDS Information
Provider Language
SigmaAldrich English
 
Lycopene Usage And Synthesis
Description Lycopene is a red-colored carotenoid found in tomatoes and other red fruits and vegetables. Carotenoids, including lycopene, are powerful antioxidants that efficiently quench singlet oxygen. Presumably through this action, carotenoids may protect against cancers, cardiovascular stress, and other diseases.
Chemical Properties Lycopene is a white to pale-yellow solid; balsam oriental aroma. Lycopene extract from tomato is a dark-red viscous liquid. It is freely soluble in ethyl acetate and n-hexane, partially soluble in ethanol and acetone, and insoluble in water. A solution in n-hexane shows an absorption maximum at approximately 472nm.
Lycopene (from the Greek word lykopersikon, meaning tomato) is a bright red carotene and carotenoid pigment. The natural resources are red fruits and vegetables, such as tomatoes, pink grapefruit, watermelon, and apricots. After absorbing from the stomach, lycopene is transported in the blood and accumulates in the liver, adrenal glands, and testes. Lycopene has been used to prevent carcinogenesis, cardiovascular diseases and aging.
Lycopene
From a chemistry perspective, lycopene is a symmetrical tetraterpene assembled from 8 isoprene units, containing 11 conjugated and 2 non-conjugated double bonds between carbon atoms. Lycopene is a member of the carotenoid family, and the predominant source in the human diet comes from tomato and tomato-based products. The antioxidant capacity of tomato strongly depends on the content and bioavailability of lycopene in the fruit. There is strong correlation between lycopene content in tomatoes and antioxidant capacity.
Occurrence Lycopene is a carotenoid that occurs naturally in tomatoes.
Uses Carotenoid antioxidant occurring in ripe fruit, especially in tomatoes.
Uses Lycopene extract from tomato is intended for use as a food colour. It provides the similar colour shades, ranging from yellow to red, as do the natural and synthetic lycopenes. Lycopene extract from tomato is also used as a food/dietary supplement in products where the presence of lycopene provides a specific value (e.g., antioxidant or other claimed health benefits). The product may also be used as an antioxidant in food supplements.
Lycopene extract from tomato is intended for use in the following food categories: baked goods, breakfast cereals, dairy products including frozen dairy desserts, dairy product analogues, spreads, bottled water, carbonated beverages, fruit and vegetable juices, soybean beverages, candy, soups, salad dressings, and other foods and beverages.
Uses Lycopene has been used:
  • in high performance liquid chromatography (HPLC) to determine its concentration in liver, kidney and lung tissue
  • to induce urokinase plasminogen activator receptor (uPAR) IN prostate cancer cell line
  • in Raman chemical imaging system to detect and visualize its internal distribution
Definition ChEBI: An acyclic carotene commonly obtained from tomatoes and other red fruits.
Production Methods Lycopene extract from tomato is produced from a tomato variety with high lycopene content, within the range of 150 to 250 mg/kg. This particular variety is not generally marketed for direct consumption, but is used primarily in the production of this lycopene extract. The extract is produced by crushing tomatoes into crude tomato juice that is then separated into serum and pulp. The tomato pulp is then extracted with ethyl acetate. The final product is obtained after solvent removal by evaporation under vacuum at 40-60°C.
Aroma threshold values Medium strength odor, balsamic type; recommend smelling in a 1.0% solution or less.
General Description

Lycopene is a naturally occurring red pigment, which belongs to the family of carotenoids. It is found in tomatoes, watermelon and papaya. Lycopene has antioxidant property.

Biological Activity Lycopene may act as an inhibitor of tumor cells. In one study, lycopene was shown to inhibit PDGF-BB-induced signalling and cell migration in human cultured skin fibroblasts (Wu et al., 2007). Trapping of PDGF by lycopene compromised melanoma-induced fibroblast migration and attenuated signalling transduction in fibroblasts (Wu et al., 2007). In functional studies, lycopene inhibited melanoma-induced fibroblast migration in a noncontact coculture system and attenuated signalling in fibroblasts simulated by melanoma-derived conditioned medium (Chiang et al., 2007).
Biochem/physiol Actions Antioxidant micronutrient of tomatoes associated with decreased risk for cancer and cardiovascular disease. Enhances gap juction communication between cells via upregulation of connexin 43 and reduces proliferation of cancer cells in culture. Inhibits cholesterol synthesis and enhances low-density lipoprotein degradation.
Mechanism of action Lycopene is a red carotenoid compound found in pink grapefruit, papaya, wolfberry, goji, and tomatoes  Dietary supplementation with tomato-based products appears to lower biomarkers of oxidative stress and carcinogenesis. Limited available evidence from small human intervention studies indicate that lycopene supplementation for 10–12 weeks may decrease UV-induced erythema. Although the bioavailability of lycopene in raw tomatoes is low due to tight binding with indigestible fiber, lycopene can be released from the food matrix through heating and food processing. The effect of topical lycopene is not well characterized. An in vivo study using SKH-1 hairless mice found that topical lycopene reduced the activity of ornithine decarboxylase (ODC) and myeloperoxidase (MPO), enzymes that have been implicated in the carcinogenic and acute inflammatory effect of UVB irradiation.
Mechanism of action The biological activities of carotenoids such as βcarotene are related in general to their ability to form vitamin A within the body.Since lycopene lacks the β-ionone ring structure, it cannot form vitamin A.Its biological effects in humans have therefore been attributed to mechanisms other than vitamin A. Two major hypotheses have been proposed to explain the anticarcinogenic and antiatherogenic activities of lycopene: nonoxidative and oxidative mechanisms.
Among the nonoxidative mechanisms, the anticarcinogenic effects of lycopene have been suggested to be due to regulation of gap-junction communication in mouse embryo fibroblast cells.Lycopene is hypothesized to suppress carcinogen-induced phosphorylation of regulatory proteins such as p53 and Rb antioncogenes and stop cell division at the G0–G1 cell cycle phase.Astorg and colleagues proposed that lycopene-induced modulation of the liver metabolizing enzyme, cytochrome P4502E1, was the underlying mechanism of protection against carcinogen-induced preneoplastic lesions in the rat liver. Preliminary in vitro evidence also indicates that lycopene reduces cellular proliferation induced by insulin-like growth factors, which are potent mitogens, in various cancer cell lines.Regulation of intrathymic T-cell differentiation (immunomodulation) was suggested to be the mechanism for suppression of mammary tumour growth by lycopene treatments in SHN retired mice.Lycopene also has been shown to act as a hypocholesterolemic agent by inhibiting HMG–CoA (3-hydroxy-3-methylglutaryl–coenzyme A) reductase.
Lycopene has been hypothesized to prevent carcinogenesis and atherogenesis by protecting critical cellular biomolecules, including lipids, lipoproteins, proteins and DNA.In healthy human subjects, lycopene- or tomatofree diets resulted in loss of lycopene and increased lipid oxidation,whereas dietary supplementation with lycopene for 1 week increased serum lycopene levels and reduced endogenous levels of oxidation of lipids, proteins, lipoproteins and DNA.Patients with prostate cancer were found to have low levels of lycopene and high levels of oxidation of serum lipids and proteins.
Anticancer Research Lycopene is a naturally occurring chemical that manifests as a red pigment contained in common foods such as tomatoes, pink grapefruits, guava, and watermelon (Giovannucci 1999). This is a very strong antioxidant that has been found to prevent and even reverse the progression of prostate cancer, as well as treating benign prostatic hyperplasia. In a recent study, 30 mg a day of lycopene showed curative results in prostate cancer. For best results, supplements are recommended alongside eating and drinking plenty of lycopene-containing food and juices (Jatoi et al. 2007). Earlier research showed that taking a specific combination of lycopene, selenium, and saw palmetto by mouth for 8 weeks reduced pain in men with prostate swelling and pelvic pain more significantly than saw palmetto alone (Feifer et al. 2002).Lycopene shows anticancer activity against prostate, endometrial, breast, and colon carcinomas. It inhibits human cancer cell proliferation by activation of cancer-preventive enzymes like phase II detoxification enzymes, by suppression of insulin-like growth factor-I-stimulated growth (Wang et al. 2012). It also activates antioxidant enzymes like GST, GSH, and GPx and protects from oxidative stress caused by carcinogens. It alters PI3K/AKT pathway and ERK and Bcl-2 signaling in pancreatic and gastric carcinoma cells, respectively (Singh et al. 2016b).
Purification Methods Crystallise lycopene from CS2/MeOH, diethyl ether/pet ether, or acetone/pet ether. Also purify it by column chromatography on deactivated alumina, CaCO3, calcium hydroxide or magnesia. It is oxygen sensitive and is stored in the dark, in an inert atmosphere. Also purified like -Carotene. [Beilstein 1 III 1076, 1 IV 1165.]
 
Lycopene Preparation Products And Raw materials
Raw materials Magnesium oxide-->ψ,ψ-Carotene, 5-cis--->(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-Tetramethyl-2,4,6,8,10,12,14-hexadecaheptenedial-->dodecanedial-->(E,E,E)-2,7-dimethylocta-2,4,6-trienedial
Preparation Products GERANIC ACID
 
 
 

                                                                         About US 



Leader Biochemical Group is a large leader incorporated industry manufacturers and suppliers of advanced refined raw materials From the year of 1996 when our factory was put into production to year of 2020, our group has successively invested in more than 52 factories with shares and subordinates.We focus on manufacture Pharm & chemicals, functional active ingredients, nutritional Ingredients, health care products, cosmetics, pharmaceutical and refined feed, oil, natural plant ingredients industries to provide top quality of GMP standards products.All the invested factories' product lines cover API and intermediates, vitamins, amino acids, plant extracts, daily chemical products, cosmetics raw materials, nutrition and health care products, food additives, feed additives, essential oil products, fine chemical products and agricultural chemical raw materials And flavors and fragrances. Especially in the field of vitamins, amino acids, pharmaceutical raw materials and cosmetic raw materials, we have more than 20 years of production and sales experience. All products meet the requirements of high international export standards and have been recognized by customers all over the world. Our manufacture basement & R&D center located in National Aerospace Economic & Technical Development Zone Xi`an Shaanxi China. Now not only relying on self-cultivation and development as well as maintains good cooperative relations with many famous research institutes and universities in China. Now, we have closely cooperation with Shanghai Institute of Organic Chemistry of Chinese Academy of Science, Beijing Institute of Material Medical of Chinese Academy of Medical Science, China Pharmaceutical University, Zhejiang University. Closely cooperation with them not only integrating Science and technology resources, but also increasing the R&D speed and improving our R&D power. Offering Powerful Tech supporting Platform for group development. Keep serve the manufacture and the market as the R&D central task, focus on the technical research.  Now there are 3 technology R & D platforms including biological extract, microorganism fermentation and chemical synthesis, and can independently research and develop kinds of difficult APIs and pharmaceutical intermediates. With the strong support of China State Institute of Pharmaceutical Industry (hereinafter short for CSIPI), earlier known as Shanghai Institute of Pharmaceutical Industry (SIPI), we have unique advantages in the R & D and industrialization of high-grade, precision and advanced products.  Now our Group technical force is abundant, existing staff more that 1000 people, senior professional and technical staff accounted for more than 50% of the total number of employees, including 15 PhD research and development personnel, 5 master′ S degree in technical and management personnel 9 people. We have advanced equipment like fermentation equipment and technology also extraction, isolation, purification, synthesis with rich production experience and strict quality control system, According to the GMP required, quickly transforming the R&D results to industrial production in time, it is our advantages and our products are exported to North and South America, Europe, Middle East, Africa, and other five continents and scale the forefront in the nation, won good international reputation.  We believe only good quality can bring good cooperation, quality is our key spirit during our production, we are warmly welcome clients and partner from all over the world contact us for everlasting cooperation, Leader will be your strong, sincere and reliable partner in China.

                                                                       Group profiles


Our Factories production lines

                                                   Our Factories R&D ability

                        Our Factories warehouse 

                

Details:

                                                       Product information

Lycopene Basic information
Product Name: Lycopene
Synonyms: 4,4-CAROTENE;LYCOSOURCE;LYCOPENE;JARCOPENE(TM);2,6,10,14,19,23,27,31-OCTAMETHYL-DOTRIACONTA-2,6,8,10,12,14,16,18,20,22,24,26,30-TRIDECAENE;PSI,PSI-CAROTENE;Y,Y-CAROTENE;E 160d
CAS: 502-65-8
MF: C40H56
MW: 536.87
EINECS: 207-949-1
Product Categories: Aliphatics;Nutritional Ingredients;All Aliphatics;Natural Plant Extract;Intermediates & Fine Chemicals;Pharmaceuticals;Carotenoids;chemical reagent;pharmaceutical intermediate;phytochemical;reference standards from Chinese medicinal herbs (TCM).;standardized herbal extract;Inhibitors;BENUTRI;Plant extract;from Blakeslea Trispora;Plant extracts
Mol File: 502-65-8.mol
Lycopene Structure
 
Lycopene Chemical Properties
Melting point  172-173°C
Boiling point  644.94°C (rough estimate)
density  0.9380 (estimate)
refractive index  1.5630 (estimate)
FEMA  4110 | TOMATO LYCOPENE
storage temp.  -70°C
solubility  Benzene (Slightly), Chloroform (Sparingly), Ethyl Acetate (Very Slightly), Metha
form  powder
color  Red to Very Dark Red
Stability: Heat sensitive - store at -70 C. Combustible. Incompatible with strong oxidizing agents.
InChIKey OAIJSZIZWZSQBC-BOJOQWLHSA-N
CAS DataBase Reference 502-65-8(CAS DataBase Reference)
 
Safety Information
Hazard Codes  Xi
Risk Statements  36/37/38
Safety Statements  26-36/37/39
WGK Germany  3
8-10-23
HS Code  32030019
MSDS Information
Provider Language
SigmaAldrich English
 
Lycopene Usage And Synthesis
Description Lycopene is a red-colored carotenoid found in tomatoes and other red fruits and vegetables. Carotenoids, including lycopene, are powerful antioxidants that efficiently quench singlet oxygen. Presumably through this action, carotenoids may protect against cancers, cardiovascular stress, and other diseases.
Chemical Properties Lycopene is a white to pale-yellow solid; balsam oriental aroma. Lycopene extract from tomato is a dark-red viscous liquid. It is freely soluble in ethyl acetate and n-hexane, partially soluble in ethanol and acetone, and insoluble in water. A solution in n-hexane shows an absorption maximum at approximately 472nm.
Lycopene (from the Greek word lykopersikon, meaning tomato) is a bright red carotene and carotenoid pigment. The natural resources are red fruits and vegetables, such as tomatoes, pink grapefruit, watermelon, and apricots. After absorbing from the stomach, lycopene is transported in the blood and accumulates in the liver, adrenal glands, and testes. Lycopene has been used to prevent carcinogenesis, cardiovascular diseases and aging.
Lycopene
From a chemistry perspective, lycopene is a symmetrical tetraterpene assembled from 8 isoprene units, containing 11 conjugated and 2 non-conjugated double bonds between carbon atoms. Lycopene is a member of the carotenoid family, and the predominant source in the human diet comes from tomato and tomato-based products. The antioxidant capacity of tomato strongly depends on the content and bioavailability of lycopene in the fruit. There is strong correlation between lycopene content in tomatoes and antioxidant capacity.
Occurrence Lycopene is a carotenoid that occurs naturally in tomatoes.
Uses Carotenoid antioxidant occurring in ripe fruit, especially in tomatoes.
Uses Lycopene extract from tomato is intended for use as a food colour. It provides the similar colour shades, ranging from yellow to red, as do the natural and synthetic lycopenes. Lycopene extract from tomato is also used as a food/dietary supplement in products where the presence of lycopene provides a specific value (e.g., antioxidant or other claimed health benefits). The product may also be used as an antioxidant in food supplements.
Lycopene extract from tomato is intended for use in the following food categories: baked goods, breakfast cereals, dairy products including frozen dairy desserts, dairy product analogues, spreads, bottled water, carbonated beverages, fruit and vegetable juices, soybean beverages, candy, soups, salad dressings, and other foods and beverages.
Uses Lycopene has been used:
  • in high performance liquid chromatography (HPLC) to determine its concentration in liver, kidney and lung tissue
  • to induce urokinase plasminogen activator receptor (uPAR) IN prostate cancer cell line
  • in Raman chemical imaging system to detect and visualize its internal distribution
Definition ChEBI: An acyclic carotene commonly obtained from tomatoes and other red fruits.
Production Methods Lycopene extract from tomato is produced from a tomato variety with high lycopene content, within the range of 150 to 250 mg/kg. This particular variety is not generally marketed for direct consumption, but is used primarily in the production of this lycopene extract. The extract is produced by crushing tomatoes into crude tomato juice that is then separated into serum and pulp. The tomato pulp is then extracted with ethyl acetate. The final product is obtained after solvent removal by evaporation under vacuum at 40-60°C.
Aroma threshold values Medium strength odor, balsamic type; recommend smelling in a 1.0% solution or less.
General Description

Lycopene is a naturally occurring red pigment, which belongs to the family of carotenoids. It is found in tomatoes, watermelon and papaya. Lycopene has antioxidant property.

Biological Activity Lycopene may act as an inhibitor of tumor cells. In one study, lycopene was shown to inhibit PDGF-BB-induced signalling and cell migration in human cultured skin fibroblasts (Wu et al., 2007). Trapping of PDGF by lycopene compromised melanoma-induced fibroblast migration and attenuated signalling transduction in fibroblasts (Wu et al., 2007). In functional studies, lycopene inhibited melanoma-induced fibroblast migration in a noncontact coculture system and attenuated signalling in fibroblasts simulated by melanoma-derived conditioned medium (Chiang et al., 2007).
Biochem/physiol Actions Antioxidant micronutrient of tomatoes associated with decreased risk for cancer and cardiovascular disease. Enhances gap juction communication between cells via upregulation of connexin 43 and reduces proliferation of cancer cells in culture. Inhibits cholesterol synthesis and enhances low-density lipoprotein degradation.
Mechanism of action Lycopene is a red carotenoid compound found in pink grapefruit, papaya, wolfberry, goji, and tomatoes  Dietary supplementation with tomato-based products appears to lower biomarkers of oxidative stress and carcinogenesis. Limited available evidence from small human intervention studies indicate that lycopene supplementation for 10–12 weeks may decrease UV-induced erythema. Although the bioavailability of lycopene in raw tomatoes is low due to tight binding with indigestible fiber, lycopene can be released from the food matrix through heating and food processing. The effect of topical lycopene is not well characterized. An in vivo study using SKH-1 hairless mice found that topical lycopene reduced the activity of ornithine decarboxylase (ODC) and myeloperoxidase (MPO), enzymes that have been implicated in the carcinogenic and acute inflammatory effect of UVB irradiation.
Mechanism of action The biological activities of carotenoids such as βcarotene are related in general to their ability to form vitamin A within the body.Since lycopene lacks the β-ionone ring structure, it cannot form vitamin A.Its biological effects in humans have therefore been attributed to mechanisms other than vitamin A. Two major hypotheses have been proposed to explain the anticarcinogenic and antiatherogenic activities of lycopene: nonoxidative and oxidative mechanisms.
Among the nonoxidative mechanisms, the anticarcinogenic effects of lycopene have been suggested to be due to regulation of gap-junction communication in mouse embryo fibroblast cells.Lycopene is hypothesized to suppress carcinogen-induced phosphorylation of regulatory proteins such as p53 and Rb antioncogenes and stop cell division at the G0–G1 cell cycle phase.Astorg and colleagues proposed that lycopene-induced modulation of the liver metabolizing enzyme, cytochrome P4502E1, was the underlying mechanism of protection against carcinogen-induced preneoplastic lesions in the rat liver. Preliminary in vitro evidence also indicates that lycopene reduces cellular proliferation induced by insulin-like growth factors, which are potent mitogens, in various cancer cell lines.Regulation of intrathymic T-cell differentiation (immunomodulation) was suggested to be the mechanism for suppression of mammary tumour growth by lycopene treatments in SHN retired mice.Lycopene also has been shown to act as a hypocholesterolemic agent by inhibiting HMG–CoA (3-hydroxy-3-methylglutaryl–coenzyme A) reductase.
Lycopene has been hypothesized to prevent carcinogenesis and atherogenesis by protecting critical cellular biomolecules, including lipids, lipoproteins, proteins and DNA.In healthy human subjects, lycopene- or tomatofree diets resulted in loss of lycopene and increased lipid oxidation,whereas dietary supplementation with lycopene for 1 week increased serum lycopene levels and reduced endogenous levels of oxidation of lipids, proteins, lipoproteins and DNA.Patients with prostate cancer were found to have low levels of lycopene and high levels of oxidation of serum lipids and proteins.
Anticancer Research Lycopene is a naturally occurring chemical that manifests as a red pigment contained in common foods such as tomatoes, pink grapefruits, guava, and watermelon (Giovannucci 1999). This is a very strong antioxidant that has been found to prevent and even reverse the progression of prostate cancer, as well as treating benign prostatic hyperplasia. In a recent study, 30 mg a day of lycopene showed curative results in prostate cancer. For best results, supplements are recommended alongside eating and drinking plenty of lycopene-containing food and juices (Jatoi et al. 2007). Earlier research showed that taking a specific combination of lycopene, selenium, and saw palmetto by mouth for 8 weeks reduced pain in men with prostate swelling and pelvic pain more significantly than saw palmetto alone (Feifer et al. 2002).Lycopene shows anticancer activity against prostate, endometrial, breast, and colon carcinomas. It inhibits human cancer cell proliferation by activation of cancer-preventive enzymes like phase II detoxification enzymes, by suppression of insulin-like growth factor-I-stimulated growth (Wang et al. 2012). It also activates antioxidant enzymes like GST, GSH, and GPx and protects from oxidative stress caused by carcinogens. It alters PI3K/AKT pathway and ERK and Bcl-2 signaling in pancreatic and gastric carcinoma cells, respectively (Singh et al. 2016b).
Purification Methods Crystallise lycopene from CS2/MeOH, diethyl ether/pet ether, or acetone/pet ether. Also purify it by column chromatography on deactivated alumina, CaCO3, calcium hydroxide or magnesia. It is oxygen sensitive and is stored in the dark, in an inert atmosphere. Also purified like -Carotene. [Beilstein 1 III 1076, 1 IV 1165.]
 
Lycopene Preparation Products And Raw materials
Raw materials Magnesium oxide-->ψ,ψ-Carotene, 5-cis--->(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-Tetramethyl-2,4,6,8,10,12,14-hexadecaheptenedial-->dodecanedial-->(E,E,E)-2,7-dimethylocta-2,4,6-trienedial
Preparation Products GERANIC ACID

 

Related Searches

Confirm to collect the product to my collection?

OKCancel

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View