Lovastatin

Lovastatin
Lovastatin
Lovastatin
Lovastatin
Lovastatin

Lovastatin

Min.Order / FOB Price:Get Latest Price

10 Milligram

Negotiable

  • Min.Order :10 Milligram
  • Purity: ≥98%
  • Payment Terms : T/T

Keywords

Lovastatin 75330-75-5 standard supplier in China

Quick Details

  • Appearance:detailed see specifications
  • Application:analysis,activity test,Botanical Reference Materials,Standard materials
  • PackAge:According to the clients requirement.
  • ProductionCapacity:1|Metric Ton|Day
  • Storage:Store at 2~8°C
  • Transportation:by air or by ocean shipping

Superiority:

Hubei CuiRan Biotechnology Co., Ltd is a leading company in the research, development, manufacture and marketing of High Quality Phytochemicals and Extracts(especially Active Ingredients from Traditional Chinese Medicine,Traditional Chinese Medicine), Natural Active Pharmaceutical Ingredients worldwide. From small quantities for R&D or reference standard, to large quantities for customizing or manufacturing, Biopurify emphasizes on consistent and reliable services for his customers. 
With excellent quality products and good service, we have clients from more than dozens countries and regions, and we pride ourselves in providing our customers with a total satisfaction experiences.
We are doing our best to be your reliable partner for high quality Phytochemicals and Reference Standards from china.
 
Our main services:
A. Supply active ingredients and reference standards ofTraditional Chinese Medicine, from mgs to kgs scale.
B. Custom extraction and purification, target Herb Active Ingredients
C. Custom synthesis and semi-synthesis for Natural Active Ingredients
D. CR, CM and PD services from lab scale, pilot scale to commercial scale(GMP is also available)
E.Traditional Chinese Medicine compounds library
 

1.Provide traditional Chinese medicine reference materials and natural active ingredients;
2.More than 2200 compounds are available for selection, continuously building high-quality natural product libraries for drug research and development;
3.Provide various screening libraries and more inhibitor products;
4.Provide separation and structural determination of natural products;
5.Laboratory scale pilot to commercial scale collaborative research and process development services.More than 180 experiences in phytochemistry (still increasing)
Each product has passed very strict testing (NMR/MS/HPLC)
Agents from many countries

General tips:For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging:1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition:Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Details:

Chemical Properties of Lovastatin

Cas No. 75330-75-5 SDF  
PubChem ID 53232 Appearance White-beige powder
Formula C24H36O5 M.Wt 404.54
Type of Compound Diterpenoids Storage Desiccate at -20°C
Synonyms Mevinolin
Solubility DMSO : ≥ 215 mg/mL (531.47 mM)
*"≥" means soluble, but saturation unknown.
Chemical Name [(1S,3R,7S,8S,8aR)-8-[2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2S)-2-methylbutanoate
SMILES CCC(C)C(=O)OC1CC(C=C2C1C(C(C=C2)C)CCC3CC(CC(=O)O3)O)C
Standard InChIKey PCZOHLXUXFIOCF-BXMDZJJMSA-N
Standard InChI InChI=1S/C24H36O5/c1-5-15(3)24(27)29-21-11-14(2)10-17-7-6-16(4)20(23(17)21)9-8-19-12-18(25)13-22(26)28-19/h6-7,10,14-16,18-21,23,25H,5,8-9,11-13H2,1-4H3/t14-,15-,16-,18+,19+,20-,21-,23-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Lovastatin

The Aspergillus terreus

Biological Activity of Lovastatin

Description Lovastatin is an inhibitor of HMG-CoA reductase with IC50 of 3.4 nM in a cell-free assay, has a direct cellular effect independent of a cholesterol-lowering effect and delays the onset and progression of diabetic nephropathy. It has a potential application to treat PD via antioxidant effect, and it promotes fibrosis and epithelial to mesenchymal transition, by regulating the production of CCN2 in human gingival fibroblasts.
Targets HMG-CoA Reductase | CDK | GSK-3 | TGF-β/Smad
In vitro

Lovastatin suppresses the aberrant tau phosphorylation from FTDP-17 mutation and okadaic acid-induction in rat primary neurons.[Pubmed: 25770969]

Neuroscience. 2015 May 21;294:14-20.

Statins are a class of cholesterol-lowering drugs and have been suggested therapeutic use for neurodegenerative diseases including Alzheimer's disease (AD). Our recent studies revealed a neuronal protective effect of Lovastatin (LOV) from N-methyl-d-aspartic acid (NMDA) excitotoxicity. The neuroprotective mechanism of statins, however, is far unknown.
METHODS AND RESULTS:
Here we demonstrated that LOV suppressed the aberrant tau phosphorylation both from frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) mutation and okadaic acid (OA) induction in cultured rat primary neurons. The protective effect of LOV occurred at multiple pathological sites of tau protein, including Tyr181, Tyr231 Ser202/Tyr205, Tyr212/Ser214 and Ser396/Ser404. Further analysis revealed that the potential mechanism of the suppressive effect of LOV resulted from two aspects, activating OA-inhibited protein phosphatase 2A (PP2A) activity and attenuating OA-induced activity of tau kinases CDK5/P25 and CDK2/4, but not glycogen synthase kinase 3β (GSK3β).
CONCLUSIONS:
These findings give new insights into the molecular mechanism of LOV-mediated neuroprotective effect and provide experimental evidence for its therapeutic use in AD.

In vivo

Prevention of Phenytoin-Induced Gingival Overgrowth by Lovastatin in Mice.[Pubmed: 25843680]

Am J Pathol. 2015 Apr 2.

Drug-induced gingival overgrowth is caused by the antiseizure medication phenytoin, calcium channel blockers, and ciclosporin. Characteristics of these drug-induced gingival overgrowth lesions differ.
METHODS AND RESULTS:
We evaluate the ability of a mouse model to mimic human phenytoin-induced gingival overgrowth and assess the ability of a drug to prevent its development. Lovastatin was chosen based on previous analyses of tissue-specific regulation of CCN2 production in human gingival fibroblasts and the known roles of CCN2 in promoting fibrosis and epithelial to mesenchymal transition. Data indicate that anterior gingival tissue overgrowth occurred in phenytoin-treated mice based on gross tissue observations and histomorphometry of tissue sections. Molecular markers of epithelial plasticity and fibrosis were regulated by phenytoin in gingival epithelial tissues and in connective tissues similar to that seen in humans. Lovastatin attenuated epithelial gingival tissue growth in phenytoin-treated mice and altered the expressions of markers for epithelial to mesenchymal transition. Data indicate that phenytoin-induced gingival overgrowth in mice mimics molecular aspects of human gingival overgrowth and that Lovastatin normalizes the tissue morphology and the expression of the molecular markers studied. Data are consistent with characterization of phenytoin-induced human gingival overgrowth in vivo and in vitro characteristics of cultured human gingival epithelial and connective tissue cells.
CONCLUSIONS:
Findings suggest that statins may serve to prevent or attenuate phenytoin-induced human gingival overgrowth, although specific human studies are required.

Lovastatin inhibits transforming growth factor-beta1 expression in diabetic rat glomeruli and cultured rat mesangial cells.[Pubmed: 10616843]

J Am Soc Nephrol. 2000 Jan;11(1):80-7.

Diabetic nephropathy is a leading cause of end-stage renal disease and is characterized by excessive deposition of extracellular matrix (ECM) proteins in the glomeruli. Transforming growth factor-beta (TGF-beta) is the major mediator of excessive accumulation of ECM proteins in diabetic nephropathy through upregulation of genes encoding ECM proteins as well as downregulation of genes for ECM-degrading enzymes. It has been shown that Lovastatin, an inhibitor of 3-hydroxy3-methylglutaryl CoA reductase, delays the onset and progression of different models of experimental nephropathy.
METHODS AND RESULTS:
To evaluate the effect of Lovastatin on the development and progression of diabetic nephropathy, streptozotocin-induced diabetic rats were studied for 12 mo. In untreated diabetic rats, there were significant increases in blood glucose, urine albumin excretion, kidney weight, glomerular volume, and TGF-beta1 mRNA expression in the glomeruli compared with normal control rats treated with citrate buffer only. Treatment with Lovastatin in diabetic rats significantly suppressed the increase in urine albumin excretion, kidney weight, glomerular volume, and TGF-beta1 mRNA expression despite high blood glucose levels. To elucidate the mechanisms of the renal effects of Lovastatin, rat mesangial cells were cultured under control (5.5 mM) or high (30 mM) glucose with Lovastatin alone, mevalonate alone, or with both. Under high glucose, TGF-beta1 and fibronectin mRNA and proteins were upregulated. These high glucose-induced changes were suppressed by Lovastatin (10 micro/M) and nearly completely restored by mevalonate (100 microM).
CONCLUSIONS:
These results suggest that Lovastatin has a direct cellular effect independent of a cholesterol-lowering effect and delays the onset and progression of diabetic nephropathy, at least in part, through suppression of glomerular expression of TGF-beta1.

Protocol of Lovastatin

Animal Research

The neuroprotective effect of lovastatin on MPP+-induced neurotoxicity is not mediated by PON2.[Pubmed: 25842176]

Neurotoxicology. 2015 Apr 1;48:166-170.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of the pigmented dopaminergic neurons in the substantia nigra pars compacta with subsequent striatal dopamine (DA) deficiency and increased lipid peroxidation. The etiology of the disease is still unclear and it is thought that PD may be caused by a combination of genetic and environmental factors. In the search of new pharmacological options, statins have been recognized for their potential application to treat PD, due to their antioxidant effect.
METHODS AND RESULTS:
The aim of this work is to contribute in the characterization of the neuroprotective effect of Lovastatin in a model of PD induced by 1-methyl-4-phenylpyridinium (MPP(+)). Male Wistar rats (200-250 g) were randomly allocated into 4 groups and administered for 7 days with different pharmacological treatments. Lovastatin administration (5 mg/kg) diminished 40% of the apomorphine-induced circling behavior, prevented the striatal DA depletion and lipid peroxides formation by MPP(+) intrastriatal injection, as compared to the group of animals treated only with MPP(+). Lovastatin produced no change in paraoxonase-2 (PON2) activity.
CONCLUSIONS:
It is evident that Lovastatin conferred neuroprotection against MPP(+)-induced protection but this effect was not associated with the induction of PON2 in the rat striatum.

Structure Identification

Biotechnol Adv. 2015 Apr 11.

Lovastatin production: From molecular basis to industrial process optimization.[Pubmed: 25868803]

Lovastatin, composed of secondary metabolites produced by filamentous fungi, is the most frequently used drug for hypercholesterolemia treatment due to the fact that Lovastatin is a competitive inhibitor of HMG-CoA reductase. Moreover, recent studies have shown several important applications for Lovastatin including antimicrobial agents and treatments for cancers and bone diseases. Studies regarding the Lovastatin biosynthetic pathway have also demonstrated that Lovastatin is synthesized from two-chain reactions using acetate and malonyl-CoA as a substrate. It is also known that there are two key enzymes involved in the biosynthetic pathway called polyketide synthases (PKS). Those are characterized as multifunctional enzymes and are encoded by specific genes organized in clusters on the fungal genome. Since it is a secondary metabolite, cultivation process optimization for Lovastatin biosynthesis has included nitrogen limitation and non-fermentable carbon sources such as lactose and glycerol. Additionally, the influences of temperature, pH, agitation/aeration, and particle and inoculum size on Lovastatin production have been also described. Although many reviews have been published covering different aspects of Lovastatin production, this review brings, for the first time, complete information about the genetic basis for Lovastatin production, detection and quantification, strain screening and cultivation process optimization. Moreover, this review covers all the information available from patent databases covering each protected aspect during Lovastatin bio-production.

Preparing Stock Solutions of Lovastatin

  1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.4719 mL 12.3597 mL 24.7194 mL 49.4389 mL 61.7986 mL
5 mM 0.4944 mL 2.4719 mL 4.9439 mL 9.8878 mL 12.3597 mL
10 mM 0.2472 mL 1.236 mL 2.4719 mL 4.9439 mL 6.1799 mL
50 mM 0.0494 mL 0.2472 mL 0.4944 mL 0.9888 mL 1.236 mL
100 mM 0.0247 mL 0.1236 mL 0.2472 mL 0.4944 mL 0.618 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Related Searches

Confirm to collect the product to my collection?

OKCancel

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View