α-cyclodextrin

α-cyclodextrin

α-cyclodextrin

Min.Order / FOB Price:Get Latest Price

1 Kilogram

Negotiable

  • Min.Order :1 Kilogram
  • Purity: 99%
  • Payment Terms : T/T,Other

Keywords

α-cyclodextrin 10016-20-3 α-cyclodextrin high purity

Quick Details

  • Appearance:White Powder
  • Application:Useful for selective precipitation of enantiomeric, positional or structural isomersα-Cyclodextrin is used as a fiber ingredient, an odor or flavor masking agent. It is also useful for emulsification
  • PackAge:According to your needs
  • ProductionCapacity:100|Metric Ton|Day
  • Storage:storage temperature
  • Transportation:COURIER

Superiority:

Product Name:    Cyclohexapentylose
Synonyms:    SCHARDINGER ALPHA-DEXTRIN;ALPHA-CYCLODEXTRIN;CYCLOHEXAAMYLOSE;CYCLOMALTOHEXAOSE;CYCLOMALTOHEXOSE;2,4,7,9,12,14,17,19,22,24,27,29-Dodecaoxaheptacyclo(26.2.2.23,6.28,11.213,16.218,21.223,26)dotetracontane-31,32,33,34,35,36,37,38,39,40,41,42-dodecol, 5,10,15,20,25,30-hexakis(hydroxymethyl)-;Alfadex;alpha-Cycloamylose
CAS:    10016-20-3
MF:    C36H60O30
MW:    972.84
EINECS:    233-007-4
Product Categories:    Industrial/Fine Chemicals;Biochemistry;Cyclodextrins;Functional Materials;Macrocycles for Host-Guest Chemistry;Oligosaccharides;Sugars;Dextrins、Sugar & Carbohydrates;10016-20-3
Mol File:    10016-20-3.mol

Details:

Cyclohexapentylose Usage And Synthesis
Chemical Properties    White crystalline powder
Chemical Properties    Cyclodextrins occur as white, practically odorless, fine crystalline powders, having a slightly sweet taste. Some cyclodextrin derivatives occur as amorphous powders.
Uses    also available in pharma grade
Uses    A naturally occuring clathrate.
Uses    Useful for selective precipitation of enantiomeric, positional or structural isomersα-Cyclodextrin is used as a fiber ingredient, an odor or flavor masking agent. It is also useful for emulsification applications. It is also used as whipping fiber and emulsifying fiber. It finds application in medical, healthcare and food and beverage applications. It is also used to lower blood low-density lipoprotein cholesterol levels and lower blood triglyceride levels. It plays an essential role in fat free or fat containing dessert compositions and also employed for the reduction or the replacement of egg white in confectionary and bakery applications. Further, it acts as a supramolecular carrier, complexing agent and controlled drug release. In addition to this, it is used to increase the insulin and leptin sensitivity.
Production Methods    Cyclodextrins are manufactured by the enzymatic degradation of starch using specialized bacteria. For example, β-cyclodextrin is produced by the action of the enzyme cyclodextrin glucosyltransferase upon starch or a starch hydrolysate. An organic solvent is used to direct the reaction that produces β-cyclodextrin, and to prevent the growth of microorganisms during the enzymatic reaction. The insoluble complex of β-cyclodextrin and organic solvent is separated from the noncyclic starch, and the organic solvent is removed in vacuo so that less than 1 ppm of solvent remains in the β-cyclodextrin. The β-cyclodextrin is then carbon treated and crystallized from water, dried, and collected.
Definition    ChEBI: Alpha-cyclodextrin is a cycloamylose composed of six alpha-(1->4) linked D-glucopyranose units.
General Description    Hexagonal plates or blade-shaped needles.
Reactivity Profile    Cyclohexapentylose has hydrophobic cavities. Cyclohexapentylose forms inclusion compounds with organic substances, salts, and halogens in the solid state or in aqueous solutions. Cyclohexapentylose is incompatible with strong oxidizing agents.
Fire Hazard    Flash point data for Cyclohexapentylose are not available; however, Cyclohexapentylose is probably combustible.
Flammability and Explosibility    Non flammable
Pharmaceutical Applications    Cyclodextrins are ‘bucketlike’ or ‘conelike’ toroid molecules, with a rigid structure and a central cavity, the size of which varies according to the cyclodextrin type. The internal surface of the cavity is hydrophobic and the outside of the torus is hydrophilic; this is due to the arrangement of hydroxyl groups within the molecule. This arrangement permits the cyclodextrin to accommodate a guest molecule within the cavity, forming an inclusion complex.
Cyclodextrins may be used to form inclusion complexes with a variety of drug molecules, resulting primarily in improvements to dissolution and bioavailability owing to enhanced solubility and improved chemical and physical stability.
Cyclodextrin inclusion complexes have also been used to mask the unpleasant taste of active materials and to convert a liquid substance into a solid material.
a-Cyclodextrin is used mainly in parenteral formulations. However, as it has the smallest cavity of the cyclodextrins it can form inclusion complexes with only relatively few, small-sized molecules. In contrast, g-cyclodextrin has the largest cavity and can be used to form inclusion complexes with large molecules; it has low toxicity and enhanced water solubility.
In parenteral formulations, cyclodextrins have been used to produce stable and soluble preparations of drugs that would otherwise have been formulated using a nonaqueous solvent.
In eye drop formulations, cyclodextrins form water-soluble complexes with lipophilic drugs such as corticosteroids. They have been shown to increase the water solubility of the drug; to enhance drug absorption into the eye; to improve aqueous stability; and to reduce local irritation.
Cyclodextrins have also been used in the formulation of solutions,suppositories, and cosmetics.

Related Searches

Confirm to collect the product to my collection?

OKCancel

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View