Encyclopedia

  • Biocatalytic preparation of a chiral synthon for a vasopeptidase inhibitor: enzymatic conversion of N2-[N-Phenylmethoxy)carbonyl] L-homocysteinyl]- L-lysine (1- > 1′)-disulfide to [4S-(4I,7I,10aJ)] 1-octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester by a novel L-lysine ϵ-aminotransferase
  • Add time:07/19/2019         Source:sciencedirect.com

    [4S-(4I,7I,10aJ)]1-Octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester (BMS-199541-01) is a key chiral intermediate for the synthesis of Omapatrilat (BMS-186716), a new vasopeptidease inhibitor under development. By using a selective enrichment culture technique we have isolated a strain of Sphingomonas paucimobilis SC 16113, which contains a novel L-lysine ϵ-aminotransferase. This enzyme catalyzed the oxidation of the ϵ-amino group of lysine in the dipeptide dimer N2-[N[phenyl-methoxy)-carbonyl] L-homocysteinyl] L-lysine)1,1-disulphide (BMS-201391-01) to produce BMS-199541-01. The aminotransferase reaction required α-ketoglutarate as the amino acceptor. Glutamate formed during this reaction was recycled back to α-ketoglutarate by glutamate oxidase from Streptomyces noursei SC 6007. Fermentation processes were developed for growth of S. paucimobilis SC 16113 and S. noursei SC 6007 for the production of L-lysine ϵ-amino transferase and glutamate oxidase, respectively. L-lysine ϵ-aminotransferase was purified to homogeneity and N-terminal and internal peptides sequences of the purified protein were determined. The mol wt of L-lysine ϵ-aminotransferase is 81 000 Da and subunit size is 40 000 Da. L-lysine ϵ-aminotransferase gene (lat gene) from S. paucimobilis SC 16113 was cloned and overexpressed in Escherichia coli. Glutamate oxidase was purified to homogeneity from S. noursei SC 6003. The mol wt of glutamate oxidase is 125 000 Da and subunit size is 60 000 Da. The glutamate oxiadase gene from S. noursei SC 6003 was cloned and expressed in Streptomyces lividans. The biotransformation process was developed for the conversion of BMS-201391-01 to BMS-199541-01 by using L-lysine ϵ-aminotransferase expressed in E. coli. In the biotransformation process, for conversion of BMS-201391-01 (CBZ protecting group) to BMS-199541-01, a reaction yield of 65–70 M% was obtained depending upon reaction conditions used in the process. Phenylacetyl or phenoxyacetyl protected analogues of BMS-201391-01 also served as substrates for L-lysine ϵ-aminotransferase giving reaction yields of 70 M% for the corresponding BMS-199541-01 analogs. Two other dipeptides N-[N[(phenylmethoxy)carbonyl]-L-methionyl]-L-lysine (BMS-203528) and N,2-[S-acetyl-N-[(phenylmethoxy)carbonyl]-L-homocysteinyl]-L-lysine (BMS-204556) were also substrates for L-lysine ϵ-aminotransferase. N-α-protected (CBZ or BOC)-L-lysine were also oxidized by L-lysine ϵ-aminotransferase.

    We also recommend Trading Suppliers and Manufacturers of 5-Acetyl-8-(phenylMethoxy)-2-quinoline N-Oxide (cas 100331-93-9). Pls Click Website Link as below: cas 100331-93-9 suppliers


    Prev:Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold
    Next: Evaluation of the tumor-initiating activity of 4-, 5-, 6-, and 7-fluorobenzo[b]fluoranthene in mouse skin)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View