Encyclopedia

  • Synthesis and pharmacological evaluation of N-benzyl substituted 4-bromo-2,5-dimethoxyphenethylamines as 5-HT2A/2C partial agonists
  • Add time:07/14/2019         Source:sciencedirect.com

    N-Benzyl substitution of phenethylamine 5-HT2A receptor agonists has dramatic effects on binding affinity, receptor selectivity and agonist activity. In this paper we examine how affinity for the 5-HT2A/2C receptors are influenced by N-benzyl substitution of 4-bromo-2,5-dimethoxyphenethylamine derivatives. Special attention is given to the 2′ and 3′-position of the N-benzyl as such compounds are known to be very potent. We found that substitutions in these positions are generally well tolerated. The 2′-position was further examined using a range of substituents to probe the hydrogen bonding requirements for optimal affinity and selectivity, and it was found that small changes in the ligands in this area had a profound effect on their affinities. Furthermore, two ligands that lack a 2′-benzyl substituent were also found to have high affinity contradicting previous held notions. Several high-affinity ligands were identified and assayed for functional activity at the 5-HT2A and 5-HT2C receptor, and they were generally found to be less efficacious agonists than previously reported N-benzyl phenethylamines.

    We also recommend Trading Suppliers and Manufacturers of (4-BROMO-BENZYL)-PYRIDIN-3-YLMETHYL-AMINE (cas 510723-60-1). Pls Click Website Link as below: cas 510723-60-1 suppliers


    Prev:Regioisomeric bromodimethoxy benzyl piperazines related to the designer substance 4-bromo-2,5-dimethoxybenzylpiperazine: GC–MS and FTIR analysis
    Next: 4-Bromo-2,3-dihydroisoxazoles: synthesis and application in halogen-lithium exchange reactions)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View