Add time:07/24/2019 Source:sciencedirect.com
The thermal decomposition characteristics and the thermal safety parameters of 2,2-di(tert-butylperoxy)butane (DBPB) was investigated by differential scanning calorimetry (DSC). The apparent activation energy (Ea) was evaluated by three different kinetic analysis methods based on the DSC experimental results. By the method of Malek, Zhuravlev-Lesokhin-Tempelman (Z-L-T) equation was the most probable mechanism function of DBPB decomposition. Furthermore, for the safety of storage and transportation, the self-accelerating decomposition temperature (SADT) of 50 kg standard packaged 50% w.t. DBPB solution was calculated by Semenov model. And the decomposition products were separated and identified by gas chromatograph/mass spectrometer (GC/MS). The decomposition process of DBPB was inferred which may help us to interpret the decomposition mechanism of di-functional peroxides. Finally, the findings of this study could do a contribution to preventing the thermal hazardous accidents, which would happen during DBPB chemical process, transportation and storage.
We also recommend Trading Suppliers and Manufacturers of 2,5-Di(tert-butylperoxy)-2,5-dimethyl-3-hexyne (cas 1068-27-5). Pls Click Website Link as below: cas 1068-27-5 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View