Add time:07/27/2019 Source:sciencedirect.com
Li-rich layered Li2MnO3 is of great attraction for high energy lithium ion batteries. However, its cycling is still needed for improvements. Here we report a hollow microsphere-structured xLi2MnO3·(1-x)LiNiO2 (x = 0.3–0.7) that is synthesized by using in-situ template-sacrificial strategy. Powder X-ray diffraction (XRD) and scanning electron microscope (SEM) characterizations prove that the xLi2MnO3·(1-x)LiNiO2 (x = 0.3–0.7) are based on monoclinic Li2MnO3 with α-NaFeO2 layered structure in which Li+ ions are orderly arranged in the transition metal layers, and the hollow-microspheres have diameters of ∼3 μm. Electrochemical results show that the optimal ratio of Li2MnO3/LiNiO2 is 0.6/0.4. As a consequence, the stabilized discharge capacity of 0.6Li2MnO3·0.4LiNiO2 (0.6LLMNO) is ∼210 mAh g−1 after the first few cycles. This shows that appropriate amount Ni substitution for Mn in Li2MnO3 helps to improve the specific capacity and cycling stability.
We also recommend Trading Suppliers and Manufacturers of Lithium nickel oxide (LiNiO2) (cas 12031-65-1). Pls Click Website Link as below: cas 12031-65-1 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View