Add time:07/31/2019 Source:sciencedirect.com
In the present study, lithium nickel manganese oxide powders grafted with camphoric nano-carbons have been exploited to fabricate high voltage, high capacity rechargeable electrodes for Li storage. The prepared lithium nickel manganese oxide particles were pyrolyzed using a camphoric solution to graft porous camphoric carbon layer on to the surface. A detailed study was performed to elucidate the effect of carbon content on the performance of the electrode. Relative contributions of capacitive and diffusion-controlled processes underlying these composite electrodes have been mathematically modeled. The lithium nickel manganese oxide composites showed two times higher conductivity as compared to the pristine samples. These electrodes exhibited a specific capacity value of ~154 mAhg-1 and showed good rate capability. The capacity fading was found to be ~17% at the end of 200 cycles for 100% depth of discharge. The specific capacity and capacity retention for these blends were found to be ~10% and ~40% higher respectively than pristine powders which are promising considering their low cost and facile fabrication process.
We also recommend Trading Suppliers and Manufacturers of Lithium manganese nickel oxide (cas 12031-75-3). Pls Click Website Link as below: cas 12031-75-3 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View