Add time:08/02/2019 Source:sciencedirect.com
This study investigated the decolorization efficiency of C.I. Reactive Red 2 (RR2) in O3, O3/H2O2, O3/Fe3+, O3/H2O2/Fe3+, UV/O3, UV/O3/Fe3+, UV/O3/H2O2 and UV/O3/H2O2/Fe3+ systems at various pHs. The effective energy consumption constants and the electrical energy per order of pollutant removal (EE/O) were also determined. The experimental results indicated that the energy efficiency was highest at [H2O2]0 = 1000 mg/l and [Fe3+]0 = 25 mg/l. Accordingly, the H2O2 and Fe3+ doses in the hybrid ozone- and UV/ozone-based systems were controlled at these values. This work suggests that the dominant reactant in O3, O3/Fe3+ and O3/H2O2 systems was O3 and that in the O3/H2O2/Fe3+ system was H2O2/Fe3+. The experimental results revealed that the combinations of Fe3+ or H2O2/Fe3+ with O3 at pH 4 and of H2O2 or H2O2/Fe3+ with UV/O3 at pH 4 or 7 yielded a higher decolorization rate than O3 and UV/O3, respectively. At pH 4, the EE/O results demonstrated that the UV/O3/H2O2/Fe3+ system reduced 85% of the energy consumption compared with the UV/O3 system. Moreover, the O3/H2O2/Fe3+ system reduced 62% of the energy consumption compared with the O3 system. At pH 7, the EE/O results revealed that the UV/O3/H2O2/Fe3+ system consumed half the energy of the UV/O3 system.
We also recommend Trading Suppliers and Manufacturers of C.I. Acid Brown 112 (cas 12219-56-6). Pls Click Website Link as below: cas 12219-56-6 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View