Add time:08/07/2019 Source:sciencedirect.com
Excess fluoride in water can be efficiently removed by lanthanum based material, however, different lanthanum species exhibited distinct fluoride removal capability. In this study, three typical lanthanum based nanoparticles denoted as L1, L2 and L3 in the form of La(OH)3, La2O3·nH2O and LaCO3OH respectively were synthesized and well characterized for fluoride removal. They differ in terms of morphology, surface charge, water content, specific surface area and crystallinity. L2 (La2O3·nH2O) exhibited the highest adsorption capacity (~28.9 mg/g) and selectivity towards fluoride, followed by L3 (LaCO3OH) (~25.1 mg/g) and L1 (La(OH)3) (~6.03 mg/g). Despite the relatively low capacity for L1, it could be efficiently regenerated by alkaline solution for repeated use. However, both L2 and L3 suffered significant from capacity loss after regeneration. X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) analysis and molecular configuration modelling suggested the distinct mechanism of fluoride adsorption onto the three materials. Fluoride was captured by L1 and L3 via electrostatic attraction and ligand exchange of different bond strength. However, a stronger LaF interaction via chemical adsorption by L2 was observed. This study provided new insights into the role of commonly used La species for fluoride removal.
We also recommend Trading Suppliers and Manufacturers of LANTHANUM NITRATE HYDRATE (cas 100587-94-8). Pls Click Website Link as below: cas 100587-94-8 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View