Add time:08/08/2019 Source:sciencedirect.com
We synthesised a new type of photochromic tungsten oxide nanoparticles, analysed their photocatalytic activity and carried out a thorough analysis of their effect on prokaryotic and eukaryotic organisms. Ultrasmall hydrated tungsten oxide nanoparticles were prepared by means of hydrothermal treatment of tungstic acid in the presence of polyvinylpyrrolidone as a template, stabiliser and growth regulator. Tungstic acid was synthesised through an ion-exchange method using sodium tungstate solution and a strongly acidic cation exchange resin.Upon illumination, photochromic nanoparticles of WO3 were shown to increase greatly their toxicity against both bacterial (both gram-positive and gram-negative – P. aeruginosa, E. coli and S. aureus) and mammalian cells (primary mouse embryonic fibroblasts); under the same conditions, fungi (C. albicans) were less sensitive to the action of tungsten oxide nanoparticles. UV irradiation of primary mouse fibroblasts in the presence of WO3 nanoparticles demonstrated a time- and dose-dependent toxic effect, the latter leading to a significant decrease in dehydrogenase activity and an increase in the number of dead cells. WO3 nanoparticles were photocatalytically active under both UV light and even diffused daylight filtered through a window glass, leading to indigo carmine organic dye discolouration.The obtained experimental data not only show good prospects for biomedical applications of tungsten trioxide, but also demonstrate the need for clear control of biosafety when it is used in various household materials and appliances.
We also recommend Trading Suppliers and Manufacturers of TUNGSTEN (V) BROMIDE (cas 13470-11-6). Pls Click Website Link as below: cas 13470-11-6 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View