Add time:08/07/2019 Source:sciencedirect.com
In view of coexistence of opioid and cholecystokinin (CCK) in the brain areas concerned with pain processing, some semirigid racemic and chiral analogues of a potent CCK receptor antagonist (benzotript) have been synthesized and tested for their modulatory role on opioid antinociception, which may be mediated by CCK-B receptor. Some of these compounds, 3e, 3g, 3h, 4a, 4b and 4h, exhibited antinociceptive potentiation comparable to benzotript and proglumide. In order to identify the essential chemical structural features important for this potentiation, molecular modeling and quantitative structure activity relationship (QSAR) studies have been carried out in the S and R enantiomers of some of these semi-rigid compounds. The 3D-biophore models, common to all molecules of the training set have been derived. These models with superimposition (match value >0.25) depicted three biophoric sites one each for, π/hydrophobic interactions, hydrogen bonding and ionic interactions among the phenyl/pyrrole ring, indole nitrogen, amidic oxygen, pyridyl nitrogen and lone pair of amidic oxygen. The total hydrophobicity and S absolute stereochemistry are found to positively contribute to potentiation of antinociception induced by morphine and the resulting quantitative pharmacophoric model with good correlation is found to well describe the observed activity.
We also recommend Trading Suppliers and Manufacturers of 1,2,3,4-TETRAHYDRO-9H-PYRIDO[3,4-B]INDOLE (cas 16502-01-5). Pls Click Website Link as below: cas 16502-01-5 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View