Encyclopedia

  • Simultaneous mercury oxidation and NO reduction in a membrane biofilm reactor
  • Add time:08/09/2019         Source:sciencedirect.com

    This work demonstrates bacterial oxidation of mercury (Hg0) coupled to nitric oxide (NO) reduction in a denitrifying membrane biofilm reactor (MBfR). In 93 days' operation, Hg0 and NO removal efficiency attained 90.7% and 74.1%, respectively. Thauera, Pseudomonas, Paracoccus and Pannonibacter played dual roles as Hg0 oxidizers and denitrifiers simultaneously. Denitrifying bacteria and the potential mercury resistant bacteria dominated the bacterial community. Denitrification-related genes (norB, norC, norD, norE, norQ and norV) and enzymatic Hg0 oxidation-related genes (katG, katE) were responsible for bacterial oxidation of Hg0 and NO reduction, as shown by metagenomic sequencing. XPS, HPLC-ICP-MS and SEM-EDS indicated the formation of a stable mercuric species (Hg2+) reasulting from Hg0 oxidation in the biofilm. Bacterial oxidation of Hg0 was coupled to NO reduction in which Hg0 served as the initial electron donor while NO served as the terminal electron acceptor and thereby redox between Hg0 and NO was formed. MBfR was capable of both Hg0 bio-oxidation and denitrifying NO reduction. This research opens up new possibilities for application of MBfR to simultaneous flue gas demercuration and denitration.

    We also recommend Trading Suppliers and Manufacturers of mercury oxide nitrate (cas 12351-40-5). Pls Click Website Link as below: cas 12351-40-5 suppliers


    Prev:A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives
    Next: Simultaneous removal of elemental mercury and NO by mercury induced thermophilic community in membrane biofilm reactor)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View