Encyclopedia

  • Comparison of dye (oxazine and thiazine) materials as a photosensitizer for use in photogalvanic cells based on molecular interaction with sodium dodecyl sulphate by spectral study
  • Add time:08/12/2019         Source:sciencedirect.com

    The photochemistry of dye is playing a significant role for understanding the mechanism of electron transfer reactions in photoelectrochemical devices such as photogalvanic cells, DSSC, semiconductor photo-catalysis, photoconductors, etc. Oxazines (Brilliant Cresyl Blue and Nile Blue O) and thiazines (Azur A, Azur B, Azur C, Methylene Blue and Toluidine Blue O) dyes have been used widely as a photosensitizer with and without surfactants in the photogalvanic cells for solar power conversion and storage. Since, the stability and solubility of photosensitizers (dyes) are increased in the presence of surfactant and these properties lead to enhance the electrical output of the photogalvanic cells. Therefore, here we have studied the extent of interaction of different dyes with sodium dodecyl sulphate (SDS), find out the order of stability of dye–SDS on the basis of magnitudes of shifting in λmax of dye monomer and try to correlate order of dye–SDS interaction with already reported electrical output data of photogalvanic cells. Brilliant Cresyl Blue, Nile Blue O, Azur A and TB O have shown red shifting while Azur B, Azur C and MB have shown blue shifting in their λmax value with SDS, which indicates formation of dye–surfactant complex. But, the extent of formation of complex for different dyes with SDS was different due to change in their alkyl groups. Dyes with red shifting have greater stability in excited state as well as higher electrical output data of the cell than dye with blue shifting. On the basis of both red and blue shifting, order of stability of dyes–SDS complex was found as: Brilliant Cresyl Blue > Toluidine Blue O > Azur A > Nile Blue > Azur B > Methylene Blue > Azur C. The order of electrical output values of these dyes in photogalvanic cells have also been supported by literature data in the presence of SDS. Hence, the dye–surfactant complex which would have greater stability in excited state might be more useful for improvement of conversion efficiency and storage capacity of photogalvanic cells in the future.

    We also recommend Trading Suppliers and Manufacturers of Sodium hydrogen ferric DTPA (cas 12389-75-2). Pls Click Website Link as below: cas 12389-75-2 suppliers


    Prev:Determination of ferric iron chelators by high-performance liquid chromatography using luminol chemiluminescence detection
    Next: Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View