Add time:08/22/2019 Source:sciencedirect.com
Enhancing power conversion efficiency in organic-inorganic heterojunction solar cells faces several serious hurdles. Although standard TiO2 nanoparticles-based heterojunction solar cells are moderately efficient, the TiO2 nanostructure has several drawbacks including a disordered low surface area with poor pore structure. Thus, it is necessary to develop a new TiO2 morphology for effective photon harvesting in organic-inorganic heterojunction solar cells. Hollow nanostructured electrodes are widely used in energy related devices because of their high surface area, larger pores, and superior light scattering properties. Here, we report the first successful application of hollow cubic TiO2 (HCT) nanostructured photoelectrodes sensitized with STIBNITE (cas 1317-86-8) for all solid-state heterojunction solar cells. The unique hollow nanostructure resolved several issues of organic-inorganic heterojunction solar cells, such as insufficient pore size for inorganic sensitizers, large grain boundary area, and poor penetration of organic hole conductors, thereby improving the cell efficiency. Device performance was strongly dependent on the thickness of stibnite, which could be controlled by deposition time. Devices optimized with HCT exhibited a high solar to power conversion efficiency (∼3.5%), which was slightly higher than the TiO2 nanoparticle-based devices.
We also recommend Trading Suppliers and Manufacturers of STIBNITE (cas 1317-86-8). Pls Click Website Link as below: cas 1317-86-8 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View