Add time:08/18/2019 Source:sciencedirect.com
We report here the dry, one-step, and low-temperature modification of FTO surfaces using pulsed plasma polymerization of allylamine (PPAAm). PPAAm/FTO surfaces were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and contact angles to understand the morphological, structural, and optical properties. FTO were coated with a very thin layer of adherent cross-linked, pinhole-, and additive-free allylamine plasma polymer resistant to hydrolysis and delamination, and characterized by a high density of positively charged amino groups. Electrochemical studies revealed that PPAAm/FTO electrodes show wide range pH stability and reaction rates tuned by the duration of plasma treatment. We show how the modification of plasma treatment duration between 72 s and 288 s affects the chemical structure and thickness of the obtained modification, having a strong influence on the charge transfer kinetics. In particular, XPS revealed the occurrence of the reduction processes under long-term plasma exposure proving the need for monitoring of this key factor. This covalent immobilization of amine compounds on FTO surface using rapid process in microwave pulsed-plasma makes it a promising electrode for future applications in electrochemical biosensors and optoelectronic devices.
We also recommend Trading Suppliers and Manufacturers of Allylamine (cas 107-11-9). Pls Click Website Link as below: cas 107-11-9 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View