Encyclopedia

  • Oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol by UV/persulfate process and corresponding formation of brominated by-products
  • Add time:07/14/2019         Source:sciencedirect.com

    This study investigated the oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol (BBMP), a widely used brominated flame retardant, and the corresponding formation of brominated by-products by the UV/persulfate process. The debromination of BBMP by the UV/persulfate process was primarily driven by sulfate radicals (SO4−) at pHs 4.0–6.0 and hydroxyl radicals (HO) at pHs 9.0–12.0. The debromination rate increased with increasing pH from 4.0 to 9.0 and remained the same at pHs 9.0 and 12.0. Bromate was formed through the oxidation of bromide released from BBMP mainly by SO4−, with free bromine as a key intermediate. Bromate formation increased with increasing pH from 4.0 to 6.0, while it remarkably decreased with increasing pH from 6.0 to 12.0. This was mainly due to the transformation of SO4− to HO and also the quenching of bromine atoms that were the key intermediate for the formation of free bromine, by hydroxyl ions at the alkaline pH. In addition, the oxidative debromination of BBMP resulted in a significant decrease in the concentrations of total organic bromine, but the formation of brominated acetic acids and unknown brominated organic by-products. The concentrations of brominated organic by-products firstly increased and then decreased with prolonged reaction time. Also, the formation of brominated organic by-products and genotoxicity at pH 9.0 were much lower than that at pH 6.0. In this study, we propose that the UV/persulfate process under mildly alkaline conditions not only debrominates BBMP efficiently but also eliminates the formation of bromate and brominated organic by-products and genotoxicity.

    We also recommend Trading Suppliers and Manufacturers of 4-(broMoMethyl)-2-Methoxypyridine (cas 120277-15-8). Pls Click Website Link as below: cas 120277-15-8 suppliers


    Prev:Determination and correlation of solubility of 4′-bromomethyl-2-cyanobiphenyl in acetone + (ethanol, n-propanol, n-butanol) mixtures
    Next: Spectroscopic and structural investigations of 4-bromomethyl-5-methyl-1,3-dioxol-2-one and 4,5-bis(bromomethyl)-1,3-dioxol-2-one by quantum chemical simulations – A comparative study)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View