Add time:08/22/2019 Source:sciencedirect.com
The oxidation of methyl and n-octyl α-d-glucopyranoside to methyl and n-octyl α-d-glucopyranosiduronate with molecular oxygen over a graphite-supported platinum catalyst was investigated. An increase of the length of the n-alkyl substituent from methyl to n-octyl resulted in a ten-fold decrease of the catalyst activity and an increase of the selectivity at pH 8.0 and 323 K. The selectivity decreased with increasing pH. The lower activity for a longer n-alkyl substituent is attributed to steric effects upon adsorption on the platinum surface and not to internal diffusion limitations. A tentative reaction scheme is presented, which describes the formation of side products through oxidation of secondary hydroxyl groups, ring cleavage and hydrolysis. Major side products are mono- and di-carboxylates with 2, 4, and 6 carbon atoms and mono-carboxylates, resulting from the oxidation of the alkyl substituent. CC-Bond cleavage mainly occurs between C-2 and C-3 or C-4 and C-5, the former being less important for a longer alkyl substituent. The higher selectivity for a longer alkyl substituent is attributed to its protecting ability against hydrolysis and the exposition of neighboring hydroxyl groups to the platinum surface.
We also recommend Trading Suppliers and Manufacturers of n-Octyl formate (cas 112-32-3). Pls Click Website Link as below: cas 112-32-3 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View