Add time:08/28/2019 Source:sciencedirect.com
.Transforming growth factor beta-1 (TGF-β1) plays a critical role in progression of cardiac fibrosis, which may involve intracellular calcium change. We examined effects of EFONIDIPINE (cas 111011-63-3), a dual T-type and L-type calcium channel blocker (CCB), on TGF-β1–induced fibrotic changes in neonatal rat cardiac fibroblast. T-type and L-type calcium channel mRNAs were highly expressed in cultured cardiac fibroblasts. TGF-β1 (5 ng/mL) significantly increased Smad2 phosphorylation and [3H]-leucine incorporation, which were attenuated by pretreatment with efonidipine (10 μM). Neither R(−)efonidipine (10 μM), selective T-type CCB, nor nifedipine (10 μM), selective L-type CCB, efficaciously inhibited both TGF-β1–induced Smad2 phosphorylation and [3H]-leucine incorporation. However, both were markedly attenuated by combination of R(−)efonidipine and nifedipine, EDTA, or calcium-free medium. Pretreatment with Smad2 siRNA significantly attenuated [3H]-leucine incorporation induced by TGF-β1. These data suggest that efonidipine elicits inhibitory effects on TGF-β1–and Smad2-dependent protein synthesis through both T-type and L-type calcium channel–blocking actions in cardiac fibroblasts.
We also recommend Trading Suppliers and Manufacturers of EFONIDIPINE (cas 111011-63-3). Pls Click Website Link as below: cas 111011-63-3 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View