Encyclopedia

  • Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method
  • Add time:08/30/2019         Source:sciencedirect.com

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG–DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 °C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10–13 mol% Sb-doped SnO2 nanoparticles is reduced by more than three orders compared with the pure SnO2 nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In2O3.

    We also recommend Trading Suppliers and Manufacturers of antimony pentoxide sol (cas 12712-36-6). Pls Click Website Link as below: cas 12712-36-6 suppliers


    Prev:Sol-gel vanadium-titanium-molybdenum mixed oxides for oxidative dehydrogenation of ethane
    Next: Sorption potential of Haro river sand for the removal of antimony from acidic aqueous solution)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View