Add time:08/30/2019 Source:sciencedirect.com
This study was designed to better understand the microstructural and phase evolution of lead-free sodium potassium niobate based piezoceramics with a nominal composition (K0.5Na0.5)0.99Sr0.005NbO3 (KNNSr) during pressure-less spark plasma sintering followed by post-annealing in oxygen. The as-sintered samples were dark-coloured and electrically conductive as a result of partial reduction of Nb5+ to Nb4+ and formation of oxygen vacancies confirmed by X-ray photoelectron and Raman spectroscopy. The Rietveld refinement analysis showed that the as-sintered samples contained two perovskite phases with monoclinic Pm unit cell and slightly different unit-cell parameters. The microstructure with sub-micrometre-sized grains unambiguously confirmed that rapid heating and short dwell time hindered the grain growth. We found that post-annealing the samples at 950 °C in oxygen led to improvement in functional properties. The samples became white-coloured, the both perovskite unit cells decreased as a result of re-oxidation, while the microstructure remained essentially unchanged. The KNNSr sintered at nominal sintering temperature of 1300 °C for 3 min and post-annealed possessed a relative density of 88% and dielectric and piezoelectric properties similar to those of the conventionally sintered samples. Our findings contribute to the understanding of pressure-less spark plasma sintering of sodium potassium niobate-based materials and suggest that arrested grain growth and minimisation of alkali evaporation not necessarily lead to dense ceramic.
We also recommend Trading Suppliers and Manufacturers of Sodium niobate (cas 12738-14-6). Pls Click Website Link as below: cas 12738-14-6 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View