Add time:08/26/2019 Source:sciencedirect.com
SummaryThe intestine has direct contact with nutritional information. The mechanisms by which particular dietary molecules affect intestinal homeostasis are not fully understood. In this study, we identified S-adenosylmethionine (SAM), a universal methyl donor synthesized from dietary methionine, as a critical molecule that regulates stem cell division in Drosophila midgut. Depletion of either dietary methionine or SAM synthesis reduces division rate of intestinal stem cells. Genetic screening for putative SAM-dependent methyltransferases has identified protein synthesis as a regulator of the stem cells, partially through a unique diphthamide modification on eukaryotic elongation factor 2. In contrast, SAM in nutrient-absorptive enterocytes controls the interleukin-6-like protein Unpaired 3, which is required for rapid division of the stem cells after refeeding. Our study sheds light upon a link between diet and intestinal homeostasis and highlights the key metabolite SAM as a mediator of cell-type-specific starvation response.
We also recommend Trading Suppliers and Manufacturers of S-(1-carboxypropyl)cysteine (cas 108203-31-2). Pls Click Website Link as below: cas 108203-31-2 suppliers
About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia
Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog
©2008 LookChem.com,License: ICP
NO.:Zhejiang16009103
complaints:service@lookchem.com Desktop View