Encyclopedia

  • Near-surface flame structure characterization of simplified ammonium perchlorate/hydroxyl-terminated polybutadiene compositions
  • Add time:09/03/2019         Source:sciencedirect.com

    Simplified model propellant configurations, such as monomodal propellants, can be valuable in the development and validation of predictive numerical tools. These idealized experiments also yield insight into the effect of diffusion length scales on combustion, but comprehensive data covering a large range of diffusional length scales do not currently exist. Here, monomodal propellants with ammonium perchlorate (AP) particle sizes under 800 µm and AP pellets ported and filled with hydroxyl-terminated polybutadiene (HTPB) were used to systematically study the effect of diffusion length scales, or AP equivalent particle sizes) of up to 4.1 mm on flame structure. In general, burning rates increased with pressure and decreasing particle size, as expected. Burning rates for samples with particle sizes greater than 400 µm converged with AP monopropellant burning rate data above approximately 2 MPa, the AP low-pressure deflagration limit (LPDL). For a given pressure above the LPDL, burning rates eventually became constant for both increasing and decreasing particle sizes. Conversely, for a given pressure below the LPDL burning rate was shown to be a function of particle diameter. Flame structures above the composite propellants were observed using 5 kHz OH planar laser-induced fluorescence (PLIF). The transient flames were underventilated (jet-like) over the AP particles at 1 atm while lifted, inverted, and overventilated at 5 atm. Distinct diffusion flame structures were observed visually above the ported samples at 1 atm. Very luminous flames were observed at the interface between the AP and binder. The effect of strain rate on sample combustion was examined using an opposed flow burner; at 1 atm, sample burning rate was not affected by strain rate. At the largest strain rate, the sample self-extinguished after igniter shutoff, indicating that secondary diffusion flames are important in the opposed flow configuration.

    We also recommend Trading Suppliers and Manufacturers of HYDROXYL AMMONIUM PERCHLORATE (cas 15588-62-2). Pls Click Website Link as below: cas 15588-62-2 suppliers


    Prev:Preparation and characterization of ultrafine Fe-O compound/ammonium perchlorate nanocomposites via in-suit growth method
    Next: Rare-earth supramolecular complex with 5,5′-bistetrazole-1,1′-diolate ligand: Synthesis, structure, thermostability, and effect on thermal decomposition of ammonium perchlorate)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View