Encyclopedia

  • Ultrasound-assisted removal of Acid Red 17 (cas 1342-80-9) using nanosized Fe3O4-loaded coffee waste hydrochar
  • Add time:09/03/2019         Source:sciencedirect.com

    The Fe3O4-loaded coffee waste hydrochar (Fe3O4-CHC) was synthesized using a simple precipitation method. The as-prepared adsorbent was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR). The EDX analysis indicated the presence of Fe in the structure of Fe3O4-CHC. The specific surface area of hydrochar increased from 17.2 to 34.7 m2/g after loading of Fe3O4 nanoparticles onto it. The prepared Fe3O4-CHC was used for removal of Acid Red 17 (cas 1342-80-9) (AR17) through ultrasound-assisted process. The decolorization efficiency decreased from 100 to 74% with the increase in initial dye concentration and from 100 to 91 and 85% in the presence of NaCl and Na2SO4, respectively. The synthesized Fe3O4-CHC exhibited good stability in the repeated adsorption-desorption cycles. The high correlation coefficient (R2 = 0.997) obtained from Langmuir model indicated that physical and monolayer adsorption of dye molecules occurred on the Fe3O4-CHC surface. Furthermore, the by-products generated through the degradation of AR17 was identified by gas chromatography–mass spectrometry analysis.

    We also recommend Trading Suppliers and Manufacturers of Red 17 (cas 1342-80-9). Pls Click Website Link as below: cas 1342-80-9 suppliers


    Prev:Assignment of far-infrared laser lines of O-17 methanol by synchrotron FTIR spectroscopy and laser frequency measurements
    Next: Chapter 19 - Aromatic Compounds in Red Varieties)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View