Encyclopedia

  • Original ResearchDiet-induced obesity and weight loss alter bile acid concentrations and bile acid–sensitive gene expression in insulin target tissues of C57BL/6J mice
  • Add time:09/03/2019         Source:sciencedirect.com

    Bile acids (BAs) influence the metabolism of glucose, lipids, and energy expenditure. We hypothesized that BA concentrations and related gene expression would be altered in lean (low-fat diet fed; LFD) vs diet-induced obese (high-fat diet fed; HFD) groups of mice and that some detected changes would remain after weight loss in an HFD group switched to the LFD (SW). Taurine conjugates dominated the bile acid composition of the liver, epididymal white adipose tissue (eWAT), and hypothalamus, with the latter having lower levels (~95%, ~95%, and ~80%, respectively; P < .05). Plasma conjugated bile acids were elevated in the HFD relative to the LFD and SW animals. Total hepatic BA concentrations decreased in obese mice fed HFD, and levels returned to preobese levels in the SW group. Subtle changes in unconjugated bile acids were detected in the eWAT, hypothalamus, and muscle. Liver expression of a variety of enzymes involved in BA synthesis (eg, Cyp27a1, Acox2), BA transport (eg, Slc22a8), and BA-sensitive receptors (Fxr, Tgr5) were unchanged by HFD feeding but decreased with SW. Other hepatic enzymes were induced in the SW group (eg, Amacr and Bal). In eWAT, Cyp27a1 and Acox2 also declined in the SW group, whereas the HFD group showed reduced expression of BA transporters (eg, Abcc3), and changes in Fxr and Tgr5 were unclear. Therefore, although most detectable changes in BA metabolism associated with diet-induced obesity are reversed by diet-induced weight loss, some effects on BA composition, concentrations, and gene expression can persist after weight loss.

    We also recommend Trading Suppliers and Manufacturers of ETHYLENEDIAMINETETRAACETIC ACID DICALCIUM SALT (cas 19709-85-4). Pls Click Website Link as below: cas 19709-85-4 suppliers


    Prev:ReviewPharmaceutical salts: A summary on doses of salt formers from the Orange Book
    Next: Biomimetic scaffolds based on hydroxyapatite nanorod/poly(d,l) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View