Encyclopedia

  • Evolution of Developmental Control MechanismsPatterning a spiralian embryo: A segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo
  • Add time:09/10/2019         Source:sciencedirect.com

    Spiralian embryogenesis is found in a number of animal phyla, but the molecular mechanisms that pattern these embryos remain poorly understood. A hallmark of spiralian development is the production of tiers of cells, called quartets, that share distinct developmental potentials. Many RNAs have been discovered that are segregated into particular quartets, raising the possibility that such RNAs could be involved in establishing quartet-specific developmental potentials. In the spiralian embryo of the mollusc Ilyanassa, the IoTis11 RNA is segregated into the second and third quartets, then decays in nearly all lineages except for the ventral–anterior cells of the third quartet, 3a and 3b. Previously published fate-mapping studies, extended here, show that 3a and 3b make bilaterally symmetrical contributions to the esophagus, head ectoderm, and larval musculature. Deletion of either 3a or 3b has only mild effects on development, but ablating both cells impairs development of the esophagus and several other organs. Knockdown of IoTis11 with a translation-blocking morpholino oligonucleotide causes a very similar set of phenotypes as ablation of 3a and 3b, showing that translation of this transcript is required for normal development of 3a and 3b. These results show that a segregated RNA is necessary for the cells that inherit it in a spiralian embryo. Given that RNAs are asymmetrically segregated in nearly all the early cleavages in this embryo, these results suggest that the embryo is extensively patterned by segregated factors. Our experiments also uncovered two previously unappreciated non-autonomous events during Ilyanassa development. First, we found that the embryo can regulate to develop normal esophagus after deletion of either 3a or 3b. Second, we found that the 3a or 3b lineages are required for normal development of the digestive glands, which arise from the fourth order macromeres.

    We also recommend Trading Suppliers and Manufacturers of TIS11 protein (cas 136653-44-6). Pls Click Website Link as below: cas 136653-44-6 suppliers


    Prev:A Drosophila melanogaster homolog of the TIS11 family of immediate early genes that can rescue a cdr1 cdc25 mutant strain of fission yeast
    Next: ReviewAn Ancient Family of RNA-Binding Proteins: Still Important!)

About|Contact|Cas|Product Name|Molecular|Country|Encyclopedia

Message|New Cas|MSDS|Service|Advertisement|CAS DataBase|Article Data|Manufacturers | Chemical Catalog

©2008 LookChem.com,License: ICP

NO.:Zhejiang16009103

complaints:service@lookchem.com Desktop View